SUEWS Documentation

Release v2020a

SUEWS dev team led by Prof Sue Grimmond

FOR USERS

1 W	That is SUEWS?	
2 H	ow to get SUEWS?	
3 H	ow to use SUEWS?	
4 H	ow to get help in using SUEWS?	
5 H	ow has SUEWS been used?	1
6 H	ow to cite SUEWS?	1
7 H	ow to support SUEWS?	1
7.1	Installation	1
7.2	Workflow of using SUEWS	1
7.3	Input files	2
7.4	Output files	17
7.5	Troubleshooting	18
7.6	SUEWS-related Software	18
7.7	Tutorials	33
7.8	Benchmark Report	33
7.9	Notation	34
7.10		34
7.1		34
7.12	2 Acknowledgements	3
7.13	Version History	3
7.14		3:
7.15	SUEWS-related Publications	30
7.16	References	30
Refere	nces	30
Index		3'

FOR USERS 1

2 FOR USERS

WHAT IS SUEWS?

Surface Urban Energy and Water Balance Scheme (**SUEWS**) [Järvi *et al.*, 2011, Ward *et al.*, 2016] is a neighbourhood/local-scale urban land surface model to simulate the urban radiation, energy and water balances using only commonly measured meteorological variables and information about the surface cover. SUEWS utilises an evaporation-interception approach [Grimmond and Oke, 1991], similar to that used in forests, to model evaporation from urban surfaces.

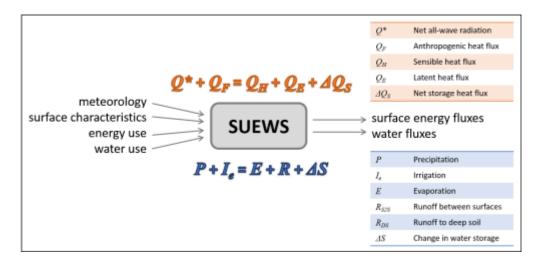


Fig. 1.1: Overview of SUEWS

The model uses seven surface types: paved, buildings, evergreen trees/shrubs, deciduous trees/shrubs, grass, bare soil and water. The surface state for each surface type at each time step is calculated from the running water balance of the canopy where the evaporation is calculated from the Penman-Monteith equation. The soil moisture below each surface type (excluding water) is taken into account. Horizontal movement of water above and below ground level is allowed.

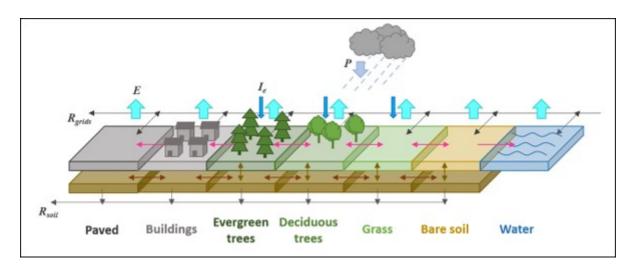


Fig. 1.2: The seven surface types considered in SUEWS

CHAPTER	
TWO	

HOW TO GET SUEWS?

Please follow the guidance in *Installation* to get SUEWS.

CHAPTER

THREE

HOW TO USE SUEWS?

• For existing users:

Overview of changes in this version, see *Version 2020a (released on 14 May 2020)*. If these changes impact your existing simulations, please see appropriate parts of the manual. It may be necessary to adapt some of your input files for for the current version.

Tip: A helper python script, *SUEWS table converter*, is provided to help facilitate the conversion of input files between different SUEWS versions.

Additionally, the manuals for previous versions can be accessed in respective sections under Version History.

• For new users:

Before performing SUEWS simulations, new users should read the overview *Introduction*, then follow the steps in *Workflow of using SUEWS* to prepare *input files* for SUEWS.

Note there are tutorials learning about running SUEWS available the tutorial.

CH	APT	ER
----	------------	----

FOUR

HOW TO GET HELP IN USING SUEWS?

Please let us know in the UMEP Community. The developers and other users are willing to help you.

CHAPTER	
FIVE	

HOW HAS SUEWS BEEN USED?

The scientific details and application examples of SUEWS can be found in SUEWS-related Publications.

CHAPTER

SIX

HOW TO CITE SUEWS?

Please go to our Zenodo repository for a proper citation of SUEWS.

Tip: Visit the repositories below for different citation styles.

CHAPTER

SEVEN

HOW TO SUPPORT SUEWS?

- 1. Cite SUEWS appropriately in your work.
- 2. Contribute to the *development*.
- 3. Report issues via the GitHub page.
- 4. Provide suggestions and feedback.

7.1 Installation

7.1.1 Formal releases

Since 2023, SUEWS is available as a command line tool via its Python wrapper package SuPy (SUEWS in Python) on PyPI and conda-forge.

Note: The Fortran-based binaries build prior to 2023 are still available at the SUEWS download page. However, they are not maintained anymore so users are encouraged to use the Python-based packages instead.

Installing Python

These instructions will set you up with mamba, which makes it easy to install and manage Python packages.

To install the mamba Python distribution follow the mamba installation instructions.

This makes installing supy and many other packages in the scientific Python ecosystem much easier and quicker. It also provides many pre-compiled binaries that are not available on PyPI.

Tip: mamba is a drop-in replacement for conda (another widely used Python package manager): mamba is faster and solves some common problems with conda. More details about mamba can be found at mamba.

Installing SuPy

One can install supy using pip:

```
python3 -m pip install supy --upgrade
```

7.1.2 Development build

The development build can be highly unstable and is not recommended for production use. However, it is automatically constructed every week for testing purposes and we are happy to receive feedback on the development build.

To install the development build of SUEWS, you need to install supy in the development mode:

1. git clone the repository:

```
git clone https://github.com/UMEP-dev/SUEWS.git
```

2. navigate to the directory of the cloned repository:

```
cd SUEWS
```

3. install the package in the development mode:

make dev

7.2 Workflow of using SUEWS

The following is to help with the model setup. Note that there are also starting tutorials for the version of SUEWS in UMEP. The version there is the same (i.e. the executable) as the standalone version so you can swap to that later once you have some familiarity.

7.2.1 Preparatory reading

Read the manual and relevant papers (and references therein):

- Järvi, L., Grimmond, C. S. B., Taka, M., Nordbo, A., Setälä, H., and Strachan, I. B. Development of the surface urban energy and water balance scheme (SUEWS) for cold climate cities. *Geosci. Model Dev.*, 7(4):1691–1711, August 2014. doi:10.5194/gmd-7-1691-2014.
- Järvi, L., Grimmond, C.S.B., and Christen, A. The surface urban energy and water balance scheme (SUEWS): Evaluation in Los Angeles and Vancouver. *J. Hydrol.*, 411(3-4):219–237, December 2011. doi:10.1016/j.jhydrol.2011.10.001.
- Ward, H.C., Kotthaus, S., Järvi, L., and Grimmond, C.S.B. Surface urban energy and water balance scheme (SUEWS): Development and evaluation at two UK sites. *Urban Clim.*, 18:1–32, December 2016. doi:10.1016/j.uclim.2016.05.001.

See other publications with example applications

7.2.2 Decide what type of model run you are interested in

	Available in this release
SUEWS at a point or for an individual area	Yes
SUEWS for multiple grids or areas	Yes
SUEWS with Boundary Layer (BL)	Yes
SUEWS with snow	Yes

7.2.3 Download the program and example data files

Visit the SUEWS download page to receive a link to download the program and example data files. Select the appropriate compiled version for your platform to download. There is also a python-based version in UMEP under the QGIS environment. For python users, SuPy - a python wrapper for SUEWS - is also available.

Note, as the definition of long double precision varies between computers (e.g. Mac vs Windows) slightly different results may occur in the output files.

Test/example files are shipped in the archive with the SUEWS executable, which are based on measurements of the London KCL site, 2011 data (denoted Kc11)

In the following, SS is the site code (e.g. Kc), ss the grid ID, YYYY the year and tt the time interval.

Filename	Description	Input/output
SSss_data.txt	Meteorological input	Input file (60-min)
SSss_YYYY_data_5.txt	Meteorological input	Input file (5-min)
InitialConditionsSSss	Initial conditions	InputYYYY.nml(+) file
SUEWS_***.txt	Property look-up tables	Input text files containing all other
		input information
RunControl.nml	Sets model run	Input (located in options main direc-
		tory)
SS_Filechoices.txt	Summary of model run	Output options
SSss_YYYY_5.txt	(Optional) 5-min	Output resolution output file
SSss_YYYY_60.txt	60-min resolution	Output output file
SSss_DailyState.txt	Daily state variables	Output (all years in one file)

(+) There is a second file InitialConditionsSSss_YYYY_EndOfRun.nml or InitialConditionsSSss_YYYY+1.nml in the input directory. At the end of the run, and at the end of each year of the run, these files are written out so that this information could be used to initialize further model runs.

7.2.4 Run the model for example data

Before running the model with your own data, check that you get the same results as the test run example files provided. Copy the example output files elsewhere so you can compare the results. When you run the program it will write over the supplied files.

To run the model you can use **Command Prompt** (in the directory where the programme is located type the model name) or just double click the executable file.

Please see *Troubleshooting* if you have problems running the model.

7.2.5 Preparation of data

Tip: If you need help preparing the data you can use some of the UMEP tools.

The information required to run SUEWS for your site consists of:

- Continuous *meteorological forcing data* for the entire period to be modelled without gaps.
- Knowledge of the surface and soil conditions immediately prior to the first model timestep.

Note: If these initial conditions are unknown, model spin-up can help; i.e. run the model and use the output at the end of the run to infer the conditions at the start of the main run). Spin-up is important for getting appropriate initial conditions for the model. An example of a spin-up can be found in Kokkonen *et al.* [2018].

- The location of the site (latitude, longitude, altitude).
- Information about the *characteristics of the surface*, including land cover, heights of buildings and trees, radiative characteristics (e.g. albedo, emissivity), drainage characteristics, soil characteristics, snow characteristics, phenological characteristics (e.g. seasonal cycle of LAI).

Note: For guidance on how to derive parameters related to LAI, albedo, surface conductance and surface roughness, the reader is referred to this link.

• Information about *human behaviour*, including energy use and water use (e.g. for irrigation or street cleaning) and snow clearing (if applicable).

Note: The anthropogenic energy use and water use may be provided as a time series in the meteorological forcing file (by setting *EmissionsMethod* = 0) if these data are available or modelled based on parameters provided to the model, including population density, hourly and weekly profiles of energy and water use, information about the proportion of properties using irrigation and the type of irrigation (automatic or manual).

It is particularly important to ensure the following input information is appropriate and representative of the site:

- Fractions of different land cover types and (less so) heights of buildings [Ward et al., 2016]
- Accurate meteorological forcing data, particularly precipitation and incoming shortwave radiation [Kokkonen et al., 2018]
- Initial soil moisture conditions [Best and Grimmond, 2014]
- Anthropogenic heat flux parameters, particularly if there are considerable energy emissions from transport, buildings, metabolism, etc [Ward et al., 2016].
- External water use (if irrigation or street cleaning occurs)
- Snow clearing (if running the snow option)
- Surface conductance parameterisation [Järvi et al., 2011, Ward et al., 2016]

SUEWS can be run either for an individual area or for multiple areas. There is no requirement for the areas to be of any particular shape but here we refer to them as model 'grids'.

Preparation of site characteristics and model parameters

The area to be modelled is described by a set of characteristics that are specified in the *SUEWS_SiteSelect.txt* file. Each row corresponds to one model grid for one year (i.e. running a single grid over three years would require three rows; running two grids over two years would require four rows). Characteristics are often selected by a code for a particular set of conditions. For example, a specific soil type (links to *SUEWS_Soil.txt*) or characteristics of deciduous trees in a particular region (links to *SUEWS_Veg.txt*). The intent is to build a library of characteristics for different types of urban areas. The codes are specified by the user, must be integer values and must be unique within the first column of each input file, otherwise the model will return an error.

Note: The first column of *SUEWS_SiteSelect.txt* the is labelled 'Grid' and can contain repeat values for different years. See *Input files* for details. Note UMEP maybe helpful for components of this.

Land cover

For each grid, the land cover must be classified using the following surface types:

Classification	Surface type	File where characteristics are specified
Non-vegetated	Paved surfaces	SUEWS_NonVeg.txt
	Building	SUEWS_NonVeg.txt
	Bare soil	SUEWS_NonVeg.txt
Vegetation	Evergreen trees	SUEWS_Veg.txt
	Deciduous trees	SUEWS_Veg.txt
	Grass	SUEWS_Veg.txt
Water	Water	SUEWS_Water.txt
Snow	Snow	SUEWS_Snow.txt

The surface cover fractions (i.e. proportion of the grid taken up by each surface) must be specified in *SUEWS_SiteSelect.txt*. The surface cover fractions are **critical**, so make certain that the different surface cover fractions are appropriate for your site.

For some locations, land cover information may be already available (e.g. from various remote sensing resources). If not, websites like Bing Maps and Google Maps allow you to see aerial images of your site and can be used to estimate the relative proportion of each land cover type. If detailed spatial datasets are available, UMEP allows for a direct link to a GIS environment using QGIS.

Anthropogenic heat flux (Q_F)

You can either model Q_F within SUEWS or provide it as an input.

- To model it population density is needed as an input for LUMPS and SUEWS to calculate Q_F.
- If you have no information about the population of the site we recommend that you use the LUCY model [Allen *et al.*, 2010, Lindberg *et al.*, 2013] to estimate the anthropogenic heat flux which can then be provided as input SUEWS along with the meteorological forcing data.

Alternatively, you can use the updated version of LUCY called LQF, which is included in UMEP.

Other information

The surface cover fractions and population density can have a major impact on the model output. However, it is important to consider the suitability of all parameters for your site. Using inappropriate parameters may result in the model returning an error or, worse, generating output that is simply not representative of your site. Please read the section on *Input files*. Recommended or reasonable ranges of values are suggested for some parameters, along with important considerations for how to select appropriate values for your site.

Data Entry

To create the series of input text files describing the characteristics of your site, there are three options:

- 1. Data can be entered directly into the input text files. The example (.txt) files provide a template to create your own files which can be edited with *A text editor* directly.
- 2. Use UMEP.

Note that in all txt files:

- The first two rows are headers: the first row is the column number; the second row is the column name.
- The names and order of the columns should not be altered from the templates, as these are checked by the model and errors will be returned if particular columns cannot be found.
- Since v2017a it is no longer necessary for the meteorological forcing data to have two rows with -9 in column 1
 as their last two rows.
- "!" indicates a comment, so any text following "!" on the same line will not be read by the model.
- If data are unavailable or not required, enter the value -999 in the correct place in the input file.
- Ensure the units are correct for all input information. See *Input files* for a description of parameters.

In addition to these text files, the following files are also needed to run the model.

Preparation of the RunControl file

In the *RunControl.nml* file the site name (SS) and directories for the model input and output are given. This means **before running** the model (even the with the example datasets) you must either

- 1. open the *RunControl.nml* file and edit the input and output file paths and the site name (with a *A text editor*) so that they are correct for your setup, or
- 2. create the directories specified in the RunControl.nml file

From the given site identification the model identifies the input files and generates the output files. For example if you specify:

FileOutputPath = "C:\FolderName\SUEWSOutput\"

and use site code SS the model creates an output file:

C:\FolderName\SUEWSOutput\SSss_YYYY_TT.txt

Note: The path separator differs between Windows (backslash: \) and Linux/Mac (slash, or forward slash: /).

If the file paths are not correct the program will return an error when run and write the error to the *Error messages:* problems.txt file.

Preparation of the Meteorological forcing data

The model time-step is specified in *RunControl.nml* (5 min is highly recommended). If meteorological forcing data are not available at this resolution, SUEWS has the option to downscale (e.g. hourly) data to the time-step required. See details about the *SSss_YYYY_data_tt.txt* to learn more about choices of data input. Each grid can have its own meteorological forcing file, or a single file can be used for all grids. The forcing data should be representative of the local-scale, i.e. collected (or derived) above the height of the roughness elements (buildings and trees).

Preparation of the InitialConditions file

Information about the surface state and meteorological conditions just before the start of the run are provided in the Initial Conditions file. At the very start of the run, each grid can have its own Initial Conditions file, or a single file can be used for all grids. For details see *Initial Conditions file*.

7.2.6 Run the model for your site

To run the model you can use **Command Prompt** (in the directory where the programme is located type the model name) or just double click the executable file.

Please see *Troubleshooting* if you have problems running the model.

7.2.7 Analyse the output

It is a good idea to perform initial checks that the model output looks reasonable.

Characteristic	Things to check
Leaf area index	Does the phenology look appropriate? • what does the seasonal cycle of leaf area index (LAI) look like? • Are the leaves on the trees at approximately the right time of the year?
Kdown	 Is the timing of diurnal cycles correct for the incoming solar radiation? Although Kdown is a required input, it is also included in the output file. It is a good idea to check that the timing of Kdown in the output file is appropriate, as problems can indicate errors with the timestamp, incorrect time settings or problems with the disaggregation. In particular, make sure the sign of the longitude is specified correctly in SUEWS_SiteSelect.txt. Checking solar angles (zenith and azimuth) can also be a useful check that the timing is correct.
Albedo	 Is the bulk albedo correct? This is critical because a small error has an impact on all the fluxes (energy and hydrology). If you have measurements of outgoing shortwave radiation compare these with the modelled values. How do the values compare to literature values for your area?

7.2.8 Summary of files

The table below lists the files required to run SUEWS and the output files produced. SS is the two-letter code (specified in *RunControl.nml*) representing the site name, ss is the grid identification (integer values between 0 and 2,147,483,647 (largest 4-byte integer)) and YYYY is the year. TT is the resolution of the input/output file and tt is the model time-step.

The last column indicates whether the files are needed/produced once per run (1/run), or once per day (1/day), for each year (1/year) or for each grid (1/grid):

```
[B] indicates files used with the CBL part of SUEWS (BLUEWS) and therefore are only needed/
→produced if this option is selected

[E] indicates files associated with ESTM storage heat flux models and therefore are only needed/
→produced if this option is selected
```

7.2.9 Get in contact

For issues met in using SUEWS, we recommend the following ways to get in contact with the developers and the SUEWS community:

- 1. Report issues on our GitHub page.
- 2. Ask for help by joining the Email-list for SUEWS.

7.3 Input files

SUEWS allows you to input a large number of parameters to describe the characteristics of your site. You should not assume that the example values provided in files or in the tables below are appropriate. Values marked with 'MD' are examples of recommended values (see the suggested references to help decide how appropriate these are for your site/model domain); values marked with 'MU' need to be set (i.e. changed from the example) for your site/model domain.

7.3.1 RunControl.nml

The file **RunControl.nml** is a namelist that specifies the options for the model run. It must be located in the same directory as the executable file.

A sample file of RunControl.nml looks like

```
&RunControl

CBLUse=0

SnowUse=0

SOLWEIGUse=0

NetRadiationMethod=3

EmissionsMethod=2

StorageHeatMethod=3

OHMIncQF=0

StabilityMethod=2

RoughLenHeatMethod=2

RoughLenMomMethod=2

SMDMethod=0

WaterUseMethod=0

FileCode='Saeve'
```

(continues on next page)

(continued from previous page)

```
FileInputPath="./Input/"
FileOutputPath="./Output/"
MultipleMetFiles=0
MultipleInitFiles=0
MultipleESTMFiles=1
KeepTstepFilesIn=1
KeepTstepFilesOut=1
WriteOutOption=2
ResolutionFilesOut=3600
Tstep=300
ResolutionFilesIn=3600
ResolutionFilesInESTM=3600
DisaggMethod=1
RainDisaggMethod=100
DisaggMethodESTM=1
SuppressWarnings=1
KdownZen=0
diagnose=0
```

Note:

- In Linux and Mac, please add an empty line after the end slash.
- The file is not case-sensitive.
- The parameters and variables can appear in any order.

The parameters and their setting instructions are provided through the links below:

· Scheme options

- CBLUse - StabilityMethod
- SnowUse - RoughLenHeatMethod
- NetRadiationMethod - RoughLenMomMethod
- BaseTMethod - SMDMethod
- EmissionsMethod - WaterUseMethod
- StorageHeatMethod - DiagMethod

• File related options

- OHMIncQF

- FileCode - MultipleESTMFiles
- FileInputPath - KeepTstepFilesIn
- FileOutputPath - KeepTstepFilesOut
- MultipleMetFiles - WriteOutOption
- MultipleInitFiles - SuppressWarnings

• Time related options

7.3. Input files 23

- Tstep

- ResolutionFilesIn

- ResolutionFilesInESTM

- ResolutionFilesOut

• Options related to disaggregation of input data

DisaggMethod

KdownZen

RainDisaggMethod

- RainAmongN

- MultRainAmongN

- MultRainAmongNUpperI

DisaggMethodESTM

Scheme options

CBLUse

Requirement Required

Description Determines whether a CBL slab model is used to calculate temperature and humidity.

Configuration

SnowUse

Requirement Required

Description Determines whether the snow part of the model runs.

Configuration

Value	Comments
0	Snow calculations are not performed.
1	Snow calculations are performed.

NetRadiationMethod

Requirement Required

Description Determines method for calculation of radiation fluxes.

Configuration

Value	Comments
0	Uses observed values of Q* supplied in meteorological forcing file.
1	Q^* modelled with $L\downarrow$ observations supplied in meteorological forcing file. Zenith angle not accounted for in albedo calculation.
2	Q^* modelled with L \downarrow modelled using cloud cover fraction supplied in meteorological forcing file [Loridan <i>et al.</i> , 2011]. Zenith angle not accounted for in albedo calculation.
3	Q^* modelled with $L\downarrow$ modelled using air temperature and relative humidity supplied in meteorological forcing file [Loridan <i>et al.</i> , 2011]. Zenith angle not accounted for in albedo calculation.
11	Same as 1 but with $L\uparrow$ modelled using surface temperature Not recommended in this version.
12	Same as 2 but with $L\uparrow$ modelled using surface temperature Not recommended in this version.
13	Same as 3 but with $L\uparrow$ modelled using surface temperature Not recommended in this version.
100	Q* modelled with L↓ observations supplied in meteorological forcing file. Zenith angle accounted for in albedo calculation. SSss_YYYY_NARPOut.txt file produced. Not recommended in this version.
200	Q* modelled with L↓ modelled using cloud cover fraction supplied in meteorological forcing file [Loridan <i>et al.</i> , 2011]. Zenith angle accounted for in albedo calculation. SSss_YYYY_NARPOut.txt file produced. Not recommended in this version.
300	Q* modelled with L↓ modelled using air temperature and relative humidity supplied in meteorological forcing file [Loridan <i>et al.</i> , 2011]. Zenith angle accounted for in albedo calculation. SSss_YYYY_NARPOut.txt file produced. Not recommended in this version.
1001	Q* modelled with <i>SPARTACUS-Surface</i> (<i>SS</i>) but with L↓ modelled as in 1. Experimental in this version.
1002	Q* modelled with <i>SPARTACUS-Surface</i> (<i>SS</i>) but with L↓ modelled as in 2. Experimental in this version.
1003	Q^* modelled with <i>SPARTACUS-Surface</i> (<i>SS</i>) but with $L\downarrow$ modelled as in 3. Experimental in this version.

BaseTMethod

Requirement Required

Description Determines method for base temperature used in HDD/CDD calculations.

Configuration

Value	Comments
1	V-shape approach: a single <i>BaseT_HC</i> is used
2	U-shape approach: TCritic_Heating_WD (TCritic_Heating_WE) and
	TCritic_Cooling_WD (TCritic_Cooling_WE) are used for HDD and CDD
	calculations in weekdays (weekends), respectively.

EmissionsMethod

Requirement Required

Description Determines method for QF calculation.

7.3. Input files 25

Configuration

Value	Comments
0	Uses values provided in the meteorological forcing file (SSss_YYYY_data_tt.txt).
	If you do not want to include QF to the calculation of surface energy balance, you
	should set values in the meteorological forcing file to zero to prevent calculation
	of QF. UMEP provides two methods to calculate QF LQF which is simpler GQF
	which is more complete but requires more data inputs
1	Not recommended in this version. Calculated according to Loridan <i>et al.</i> [2011]
	using coefficients specified in SUEWS_AnthropogenicEmission.txt. Modelled val-
	ues will be used even if QF is provided in the meteorological forcing file.
2	Recommended in this version. Calculated according to Järvi <i>et al.</i> [2011] using
	coefficients specified in SUEWS_AnthropogenicEmission.txt and diurnal patterns
	specified in SUEWS_Profiles.txt. Modelled values will be used even if QF is pro-
	vided in the meteorological forcing file.
3	Updated Loridan et al. [2011] method using daily (not instanta-
	neous) air temperature (HDD(id-1,3)) using coefficients specified in
	SUEWS_AnthropogenicEmission.txt.
4	Järvi et al. [2019] method, in addition to anthropogenic heat due to building energy
	use calculated by Järvi et al. [2011], that due to metabolism and traffic is also
	calculated using coefficients specified in SUEWS_AnthropogenicEmission.txt and
	diurnal patterns specified in SUEWS_Profiles.txt. Modelled values will be used
	even if QF is provided in the meteorological forcing file.

${\tt Storage Heat Method}$

Requirement Required

Description Determines method for calculating storage heat flux QS.

Configuration

Value	Comments
0	Uses observed values of QS supplied in meteorological forcing file.
1	QS modelled using the objective hysteresis model (OHM) [Grimmond et al., 1991]
	using parameters specified for each surface type.
3	QS modelled using AnOHM [Sun et al., 2017]. Not recommended in this version.
4	QS modelled using the Element Surface Temperature Method (ESTM) [Offerle et
	al., 2005]. Not recommended in this version.

OHMIncQF

Requirement Required

 $\textbf{Description} \ \ \text{Determines whether the storage heat flux calculation uses Q}^* \ \text{or (Q}^* \ \text{+QF)}.$

Configuration

Value	Comments
0	QS modelled Q* only.
1	QS modelled using Q*+QF.

StabilityMethod

Requirement Required

Description Defines which atmospheric stability functions are used.

Configuration

Value	Comments
0	Not used.
1	Not used.
2	
	Momentum:
	- unstable: Dyer [1974] modified by Högström [1988]
	- stable: Van Ulden and Holtslag [1985]
	Heat: Dyer [1974] modified by Högström [1988]
	Not recommended in this version.
3	
	Momentum: Campbell and Norman [1998] (Eq 7.27, Pg97)
	• Heat
	unstable: Campbell and Norman [1998]
	- stable: Campbell and Norman [1998]
	Recommended in this version.
4	
	• Momentum: Businger <i>et al.</i> [1971] modified by Högström [1988]
	Heat: Businger et al. [1971] modified by Högström [1988]
	Not recommended in this version.

RoughLenHeatMethod

Requirement Required

Description Determines method for calculating roughness length for heat.

Configuration

Value	Comments
1	Uses value of 0.1*z0m.
2	Calculated according to Kawai et al. [2009].
3	Calculated according to Voogt and Grimmond [2000].
4	Calculated according to Kanda et al. [2007].
5	Adaptively using z0m based on pervious coverage: if fully pervious, use method
	1; otherwise, use method 2.
	Recommended in this version.

${\tt RoughLenMomMethod}$

Requirement Required

Description Determines how aerodynamic roughness length (z0m) and zero displacement height (zdm) are calculated.

Configuration

7.3. Input files 27

Value	Comments
1	Values specified in SUEWS_SiteSelect.txt are used.
	Tip: Note that UMEP provides tools to calculate these. See Kent <i>et al.</i> [2017] for recommendations on methods. Kent <i>et al.</i> [2017] have developed a method to include vegetation which is also available within UMEP.
2	z0m and zd are calculated using 'rule of thumb' [Grimmond and Oke, 1999] using
	mean building and tree height specified in SUEWS_SiteSelect.txt. z0m and zd are
	adjusted with time to account for seasonal variation in porosity of deciduous trees.
3	z0m and zd are calculated based on the Macdonald et al. [1998] method using
	mean building and tree heights, plan area fraction and frontal areal index specified
	in SUEWS_SiteSelect.txt. z0m and zd are adjusted with time to account for seasonal
	variation in porosity of deciduous trees.

SMDMethod

Requirement Required

Description Determines method for calculating soil moisture deficit (SMD).

Configuration

Value	Comments
0	SMD modelled using parameters specified in SUEWS_Soil.txt. Recommended in
	this version.
1	Observed SM provided in the meteorological forcing file is used. Data are
	provided as volumetric soil moisture content. Metadata must be provided in
	SUEWS_Soil.txt.
2	Observed SM provided in the meteorological forcing file is used. Data are
	provided as gravimetric soil moisture content. Metadata must be provided in
	SUEWS_Soil.txt.

SOLWEIGUse

Deprecated since version v2020a.

Requirement Required

Description Determines whether SOLWEIG is used to calculate detailed radiation balance of all facets.

Configuration

Value	Comments
0	SOLWEIG calculations are not performed.
1	SOLWEIG calculations are performed. A grid of mean radiant temperature (Tmrt) is calculated based on high resolution digital surface models.

WaterUseMethod

Requirement Required

Description Defines how external water use is calculated.

Configuration

Value	Comments
0	External water use modelled using parameters specified in SUEWS_Irrigation.txt.
1	Observations of external water use provided in the meteorological forcing file are
	used.

DiagMethod

Requirement Required

Description Defines how near surface diagnostics are calculated.

Configuration

Value	Comments
0	Use MOST to calculate near surface diagnostics.
1	Use RST to calculate near surface diagnostics.
1	Use a set of criteria based on plan area index, frontal area index and heights of
	roughness elements to determine if RSL or MOST should be used.

Time related options

Tstep

Requirement Required

Description Specifies the model time step [s].

Configuration A value of 300 s (5 min) is strongly recommended. The time step cannot be less than 1 min or greater than 10 min, and must be a whole number of minutes that divide into an hour (i.e. options are 1, 2, 3, 4, 5, 6, 10 min or 60, 120, 180, 240, 300, 360, 600 s).

ResolutionFilesIn

Requirement Required

Description Specifies the resolution of the input files [s] which SUEWS will disaggregate to the model time step.

Configuration 1800 s for 30 min or 3600 s for 60 min are recommended.

Note: If ResolutionFilesIn is not provided, SUEWS assumes ResolutionFilesIn = Tstep.

ResolutionFilesInESTM

Requirement Optional

Description Specifies the resolution of the ESTM input files [s] which SUEWS will disaggregate to the model time step.

7.3. Input files 29

Configuration The same as for *ResolutionFilesIn*.

ResolutionFilesOut

Requirement Required

Description Specifies the resolution of the output files [s].

Configuration 1800 s for 30 min or 3600 s for 60 min are recommended.

File related options

FileCode

Requirement Required

Description Alphabetical site identification code (e.g. He, Sc, Kc).

Configuration This must be consistent with names of *meterological input file* and *initial condition files*

FileInputPath

Requirement Required

Description Input directory.

Configuration This can be set either as an absolute path or a relative path where the program is initiated.

FileOutputPath

Requirement Required

Description Output directory.

Configuration This can be set either as an absolute path or a relative path where the program is initiated.

MultipleMetFiles

Requirement Required

Description Specifies whether one single meteorological forcing file is used for all grids or a separate met file is provided for each grid.

Configuration

Value	Comments
0	Single meteorological forcing file used for all grids. No grid number should appear
	in the file name.
1	Separate meteorological forcing files used for each grid. The grid number should
	appear in the file name.

MultipleInitFiles

Requirement Required

Description Specifies whether one single initial conditions file is used for all grids at the start of the run or a separate initial conditions file is provided for each grid.

Configuration

Value	Comments
0	Single initial conditions file used for all grids. No grid number should appear in
	the file name.
1	Separate initial conditions files used for each grid. The grid number should appear
	in the file name.

MultipleESTMFiles

Requirement Optional

Description Specifies whether one single ESTM forcing file is used for all grids or a separate file is provided for each grid.

Configuration

Value	Comments
0	Single ESTM forcing file used for all grids. No grid number should appear in the
	file name.
1	Separate ESTM forcing files used for each grid. The grid number should appear in
	the file name.

KeepTstepFilesIn

Requirement Optional

Description Specifies whether input meteorological forcing files at the resolution of the model time step should be saved.

Configuration

Value	Comments
0	Meteorological forcing files at model time step are not written out. This is the
	default option Recommended to reduce processing time and save disk space as
	(e.g. 5-min) files can be large.
1	Meteorological forcing files at model time step are written out.

KeepTstepFilesOut

Requirement Optional

Description Specifies whether output meteorological forcing files at the resolution of the model time step should be saved.

Configuration

Value	Comments
0	Output files at model time are not saved. This is the default option. Recommended
	to save disk space as (e.g. 5-min) files can be large.
1	Output files at model time step are written out.

WriteOutOption

Requirement Optional

7.3. Input files 31

Description Specifies which variables are written in the output files.

Configuration

Value	Comments
0	All (except snow-related) output variables written. This is the default option.
1	All (including snow-related) output variables written.
2	Writes out a minimal set of output variables (use this to save space or if
	information about the different surfaces is not required).

SuppressWarnings

Requirement Optional

Description Controls whether the warnings.txt file is written or not.

Configuration

Value	Comments
0	The warnings.txt file is written. This is the default option.
1	No warnings.txt file is written. May be useful for large model runs as this file can
	grow large.

Options related to disaggregation of input data

DisaggMethod

Requirement Optional

Description Specifies how meteorological variables in the input file (except rain and snow) are disaggregated to the model time step. Wind direction is not currently downscaled so non -999 values will cause an error.

Configuration

Value	Comments
1	Linear downscaling of averages for all variables, additional zenith check is used for
	Kdown. This is the default option.
2	Linear downscaling of instantaneous values for all variables, additional zenith
	check is used for Kdown.
3	WFDEI setting: average Kdown (with additional zenith check); instantaneous for
	Tair, RH, pres and U. (N.B. WFDEI actually provides Q not RH)

KdownZen

Requirement Optional

Description Can be used to switch off zenith checking in Kdown disaggregation. Note that the zenith calculation requires location information obtained from *SUEWS_SiteSelect.txt*. If a single met file is used for all grids, the zenith is calculated for the first grid and the disaggregated data is then applied for all grids.

Configuration

Value	Comments
0	No zenith angle check is applied.
1	Disaggregated Kdown is set to zero when zenith angle exceeds 90 degrees (i.e. sun
	below horizon) and redistributed over the day. This is the default option.

RainDisaggMethod

Requirement Optional

Description Specifies how rain in the meteorological forcing file are disaggregated to the model time step. If present in the original met forcing file, snow is currently disaggregated in the same way as rainfall.

Configuration

Value	Comments
100	Rainfall is evenly distributed among all subintervals in a rainy interval. This is the
	default option.
101	Rainfall is evenly distributed among among RainAmongN subintervals in a rainy
	interval – also requires RainAmongN to be set.
102	Rainfall is evenly distributed among among RainAmongN subintervals in a rainy
	interval for different intensity bins – also requires MultRainAmongN and
	MultRainAmongNUpperI to be set.

RainAmongN

Requirement Optional

Description Specifies the number of subintervals (of length tt) over which to distribute rainfall in each interval (of length TT).

Configuration Must be an integer value. Use with RainDisaggMethod = 101.

MultRainAmongN

Requirement Optional

Description Specifies the number of subintervals (of length tt) over which to distribute rainfall in each interval (of length TT) for up to 5 intensity bins. Must take integer values.

Configuration Use with RainDisaggMethod = 102. e.g. MultRainAmongN(1) = 5, MultRainAmongN(2) = 8, MultRainAmongN(3) = 12

MultRainAmongNUpperI

Requirement Optional

Description Specifies upper limit for each intensity bin to apply MultRainAmongN.

Configuration Any intensities above the highest specified intensity will use the last MultRainAmongN value and write a warning to *Warning messages: warnings.txt*. Use with RainDisaggMethod = 102. e.g. MultRainAmongNUpperI(1) = 0.5, MultRainAmongNUpperI(2) = 2.0, MultRainAmongNUpperI(3) = 50.0

DisaggMethodESTM

Requirement Optional

Description Specifies how ESTM-related temperatures in the input file are disaggregated to the model time step.

Configuration

Value	Comments
1	Linear downscaling of averages.
2	Linear downscaling of instantaneous values.

7.3.2 SUEWS Site Information

Note:

1. We use the following codes for denoting the requirement level of various input variables/parameters for SUEWS throughout this section:

MU

Parameters which must be supplied and must be specific for the site/grid being run.

MD

Parameters which must be supplied and must be specific for the site/grid being run (but default values may be ok if these values are not known specifically for the site).

0

Parameters that are optional, depending on the model settings in *RunControl.nml*. Set any parameters that are not used/not known to '-999'.

L

Codes that are used to link between the input files, which must

- be specified in the correct way to link the *main* and *sub-reference* files (similar to key-value pairs);
- be integers and unique in column 1 of corresponding input files; and
- match up with column 1 of the corresponding input file, even if those parameters are not used (in which case set all columns except column 1 to '-999' in the corresponding input file), otherwise the model run will fail.
- 2. We use the following codes for denoting the typical land cover/entity types of SUEWS throughout this section:

Paved

Paved surface

Bldgs

Building surface

EveTr

Evergreen trees and shrubs

DecTr

Deciduous trees and shrubs

Grass

Grass surface

BSoil

Unmanaged land and/or bare soil

Water

Water surface

Runoff

The water that drains freely off the impervious surface

SoilStore

The water stored in the underlying soil that infiltrates from the pervious surface

The following text files provide SUEWS with information about the study area.

SUEWS_AnthropogenicEmission.txt

Note: Changed in version v2019a: this file is renamed from SUEWS_AnthropogenicHeat.txt (prior to v2019a) to include more emission related settings.

SUEWS_AnthropogenicEmission.txt provides the parameters needed to model the anthropogenic heat flux using either the method of Loridan *et al.* [2011] based on air temperature (EmissionsMethod = 1 in RunControl.nml) or the method of Järvi *et al.* [2011] based on heating and cooling degree days (EmissionsMethod = 2 in RunControl.nml).

For the method of Järvi *et al.* [2011] (*EmissionsMethod* = 2 in *RunControl.nml*), one can further configure the scheme for calculting *HDDl CDD* via *BaseTMethod* in *RunControl.nml*:

- BaseTMethod = 1 ("V-shape" approach): a single BaseT_HC is used by omitting the comfort range where neither heating nor cooling is activated.
- BaseTMethod = 2 ("U-shape" approach): TCritic_Heating_WD (TCritic_Heating_WE) and TCritic_Cooling_WD (TCritic_Cooling_WE) are used for HDD and CDD calculations in weekdays (weekends), respectively, which allows a comfort range between TCritic_Heating_WD (TCritic_Heating_WE) and TCritic_Cooling_WD (TCritic_Cooling_WE).

The sub-daily variation in anthropogenic heat flux is modelled according to the daily cycles specified in SUEWS_Profiles.txt.

Alternatively, if available, the anthropogenic heat flux can be provided in the met forcing file (and set EmissionsMethod = 0 in RunControl.nml) by filling the qf column with valid values.

No.	Column Name	Use	Description
1	Code	L	Code linking to a corresponding look-up table.
2	BaseT_HC	MU	Base temperature for heating degree days [°C]
3	QF_A_WD	MU	Base value for QF on weekdays [W m ⁻² (Cap ha ⁻¹) ⁻¹]
		0	
4	QF_B_WD	MU	Parameter related to cooling degree days on weekdays [W m ⁻² K ⁻¹ (Cap
		0	ha^{-1}) ⁻¹]
5	QF_C_WD	MU	Parameter related to heating degree days on weekdays [W m ⁻² K ⁻¹ (Cap
		0	ha^{-1}) ⁻¹]
6	QF_A_WE	MU	Base value for QF on weekends [W m ⁻² (Cap ha ⁻¹) ⁻¹]
		0	
7	QF_B_WE	MU	Parameter related to cooling degree days on weekends [W m ⁻² K ⁻¹ (Cap
		0	ha^{-1}) ⁻¹]
8	QF_C_WE	MU	Parameter related to heating degree days on weekends [W m ⁻² K ⁻¹ (Cap
		0	ha ⁻¹) ⁻¹]
9	AHMin_WD	MU	Minimum QF on weekdays [W m ⁻²]
		0	
			continues on port page

continues on next page

Table 7.1 – continued from previous page

NI.	Oak was Name		7.1 – continued from previous page
No.	Column Name		Description
10	AHMin_WE	MU	Minimum QF on weekends [W m ⁻²]
		0	2
11	AHSlope_Heating_WD	MU	Heating slope of QF on weekdays [W m ⁻² K ⁻¹]
		0	
12	AHSlope_Heating_WE	MU	Heating slope of QF on weekends [W m ⁻² K ⁻¹]
		0	
13	AHSlope_Cooling_WD	MU	Cooling slope of QF on weekdays [W m ⁻² K ⁻¹]
		0	
14	AHSlope_Cooling_WE	MU	Cooling slope of QF on weekends [W m ⁻² K ⁻¹]
1 .	miorope_eooring_nz	0	cooling stope of Q1 on weenends [W in 11]
15	TCritic_Heating_WD	MU	Critical heating temperature on weekdays [°C]
13	TCTTCTC_HeatIng_wD		Critical heating temperature on weekdays [C]
1.6	mo to the state of	0	0.11.11.00
16	TCritic_Heating_WE	MU	Critical heating temperature on weekends [°C]
		0	
17	TCritic_Cooling_WD	MU	Critical cooling temperature on weekdays [°C]
		0	
18	TCritic_Cooling_WE	MU	Critical cooling temperature on weekends [°C]
		0	•
19	EnergyUseProfWD	MU	Code linking to EnergyUseProfWD in SUEWS_Profiles.txt.
		0	code mining to zarezy) ober z ozna m s o z m s_1 rojmosmu.
20	EnergyUseProfWE	MU	Code linking to EnergyUseProfWE in SUEWS_Profiles.txt.
20	Litergyoserrorw	0	Code mixing to Energy oser round in SOEWS_1 rojues.txt.
21	A attivitue Dece CUD		Code limbing to Activities Dec CVD in CLIENC Dec Cliented
21	ActivityProfWD	MU	Code linking to ActivityProfWD in SUEWS_Profiles.txt.
		0	
22	ActivityProfWE	MU	Code linking to ActivityProfWE in SUEWS_Profiles.txt.
		0	
23	TraffProfWD	MU	Code for traffic activity profile (weekdays) linking to Code of
		0	SUEWS_Profiles.txt. Not used in v2018a.
24	TraffProfWE	MU	Code for traffic activity profile (weekends) linking to Code of
		0	SUEWS_Profiles.txt. Not used in v2018a.
25	PopProfWD	MU	Code for population density profile (weekdays) linking to Code of
	1 0/21 2 0 2 11 2	0	SUEWS_Profiles.txt.
26	PopProfWE	MU	Code for population density profile (weekends) linking to <i>Code</i> of
20	FOPFIOIWE	0	SUEWS_Profiles.txt.
27	Miss OFM - 1 - I		· ·
27	MinQFMetab	MU	Minimum value for human heat emission. [W m ⁻²]
		0	7-
28	MaxQFMetab	MU	Maximum value for human heat emission. [W m ⁻²]
		0	
29	MinFCMetab	MU	Minimum (night) CO2 from human metabolism. [W m ⁻²]
		0	
30	MaxFCMetab	MU	Maximum (day) CO2 from human metabolism. [W m ⁻²]
		0	, , , , , , , , , , , , , , , , , , ,
31	FrPDDwe	MU	Fraction of weekend population to weekday population. [-]
	1110000	0	Traction of weekeng population to weeking population. [-]
22	EnFoggilEvel U+		Frontian of fossil fuels used for building bestin = []
32	FrFossilFuel_Heat	MU	Fraction of fossil fuels used for building heating [-]
		0	
33	FrFossilFuel_NonHeat	MU	Fraction of fossil fuels used for building energy use [-]
		0	
34	EF_umolCO2perJ	MU	Emission factor for fuels used for building heating.
		0	
$\overline{}$			continues on poyt page

continues on next page

Table 7.1 – continued from previous page

No.	Column Name	Use	Description
35	EnEF_v_Jkm	MU	Emission factor for heat [J k m ⁻¹].
		0	
36	FcEF_v_kgkmWD	MU	CO2 emission factor for weekdays [kg km ⁻¹]
		0	
37	FcEF_v_kgkmWE	MU	CO2 emission factor for weekends [kg km ⁻¹]
		0	
38	CO2PointSource	MU	CO2 emission factor [kg km ⁻¹]
		0	
39	TrafficUnits	MU	Units for the traffic rate for the study area. Not used in v2018a.
		0	

An example SUEWS_AnthropogenicEmission.txt can be found in the online version.

SUEWS_BiogenCO2.txt

Caution: The BiogenCO2 part is under development and not ready for use.

SUEWS_BiogenCO2.txt provides the parameters needed to model the Biogenic CO2 characteristics of vegetation surfaces.

No.	Column Name	Use	Description
1	Code	L	Code linking to a corresponding look-up table.
2	alpha	MU	The mean apparent ecosystem quantum. Represents the initial slope of the
		0	light-response curve.
3	beta	MU	The light-saturated gross photosynthesis of the canopy. [umol m ⁻² s ⁻¹]
		0	
4	theta	MU	The convexity of the curve at light saturation.
		0	
5	alpha_enh	MU	Part of the <i>alpha</i> coefficient related to the fraction of vegetation.
		0	
6	beta_enh	MU	Part of the <i>beta</i> coefficient related to the fraction of vegetation.
		0	
7	resp_a	MU	Respiration coefficient a.
		0	
8	resp_b	MU	Respiration coefficient b - related to air temperature dependency.
		0	
9	min_respi	MU	Minimum soil respiration rate (for cold-temperature limit) [umol m ⁻² s ⁻¹].
		0	

An example SUEWS_BiogenCO2.txt can be found online

SUEWS Conductance.txt

SUEWS_Conductance.txt contains the parameters needed for the Jarvis (1976) [Jarvis, 1976] surface conductance model used in the modelling of evaporation in SUEWS. These values should **not** be changed independently of each other. The suggested values below have been derived using datasets for Los Angeles and Vancouver (see Järvi *et al.* [2011]) and should be used with gsModel = 1. An alternative formulation (gsModel = 2) uses slightly different functional forms and different coefficients (with different units).

No.	Column Name	Use	Description
1	Code	L	Code linking to a corresponding look-up table.
2	G1	MD	Related to maximum surface conductance [mm s ⁻¹]
3	G2	MD	Related to Kdown dependence [W m ⁻²]
4	G3	MD	Related to VPD dependence [units depend on gsMode1]
5	G4	MD	Related to VPD dependence [units depend on gsMode1]
6	G5	MD	Related to temperature dependence [°C]
7	G6	MD	Related to soil moisture dependence [mm ⁻¹]
8	TH	MD	Upper air temperature limit [°C]
9	TL	MD	Lower air temperature limit [°C]
10	S1	MD	A parameter related to soil moisture dependence [-]
11	S2	MD	A parameter related to soil moisture dependence [mm]
12	Kmax	MD	Maximum incoming shortwave radiation [W m ⁻²]
13	gsModel	MD	Formulation choice for conductance calculation.

An example SUEWS_Conductance.txt can be found online

SUEWS Irrigation.txt

External water use may be used for a wide range of reasons (e.g. cleaning roads, irrigating plants, fountains, washing cars).

SUEWS has two options for External Water use (if non-zero):

- 1) provide observed data in meteorological forcing file in the *Wuh* column with valid values by setting *WaterUseMethod* = 1 in *RunControl.nml*
- 2) a simple model that calculates daily water use from the mean daily air temperature, number of days since rain and fraction of irrigated area using automatic/manual irrigation. The user needs to supply coefficients (XXX) for these relations.
 - a) sub-daily pattern of water use is determined from the daily cycles specified in SUEWS_Profiles.txt.
 - b) surface that the water can be applied to is specified by XX.
 - c) water can pond.

No.	Column Name	Use	Description
1	Code	L	Code linking to a corresponding look-up table.
2	Ie_start	MU	Day when irrigation starts [DOY]
3	Ie_end	MU	Day when irrigation ends [DOY]
4	InternalWaterUse	MU	Internal water use [mm h ⁻¹]
5	Faut	MU	Fraction of irrigated area that is irrigated using automated systems
6	H_maintain	MU	water depth to maintain used in automatic irrigation (e.g., ponding water
			due to flooding irrigation in rice crop-field) [mm].
7	Ie_a1	MD	Coefficient for automatic irrigation model [mm d ⁻¹]
8	Ie_a2	MD	Coefficient for automatic irrigation model [mm d ⁻¹ K ⁻¹]
9	Ie_a3	MD	Coefficient for automatic irrigation model [mm d ⁻²]
10	Ie_m1	MD	Coefficient for manual irrigation model [mm d ⁻¹]
11	Ie_m2	MD	Coefficient for manual irrigation model [mm d ⁻¹ K ⁻¹]
12	Ie_m3	MD	Coefficient for manual irrigation model [mm d ⁻²]
13	DayWat(1)	MU	Irrigation allowed on Sundays [1], if not [0]
14	DayWat(2)	MU	Irrigation allowed on Mondays [1], if not [0]
15	DayWat(3)	MU	Irrigation allowed on Tuesdays [1], if not [0]
16	DayWat(4)	MU	Irrigation allowed on Wednesdays [1], if not [0]
17	DayWat(5)	MU	Irrigation allowed on Thursdays [1], if not [0]
18	DayWat(6)	MU	Irrigation allowed on Fridays [1], if not [0]
19	DayWat(7)	MU	Irrigation allowed on Saturdays [1], if not [0]
20	DayWatPer(1)	MU	Fraction of properties using irrigation on Sundays [0-1]
21	DayWatPer(2)	MU	Fraction of properties using irrigation on Mondays [0-1]
22	DayWatPer(3)	MU	Fraction of properties using irrigation on Tuesdays [0-1]
23	DayWatPer(4)	MU	Fraction of properties using irrigation on Wednesdays [0-1]
24	DayWatPer(5)	MU	Fraction of properties using irrigation on Thursdays [0-1]
25	DayWatPer(6)	MU	Fraction of properties using irrigation on Fridays [0-1]
26	DayWatPer(7)	MU	Fraction of properties using irrigation on Saturdays [0-1]

An example SUEWS_Irrigation.txt can be found in the online version.

SUEWS_NonVeg.txt

SUEWS_NonVeg.txt specifies the characteristics for the non-vegetated surface cover types (Paved, Bldgs, BSoil) by linking codes in column 1 of SUEWS_NonVeg.txt to the codes specified in SUEWS_SiteSelect.txt (Code_Paved, Code_Bldgs, Code_BSoil). Each row should correspond to a particular surface type. For suggestions on how to complete this table, see: Typical Values.

No.	Column Name	Use	Description
1	Code	L	Code linking to a corresponding look-up table.
2	AlbedoMin	MU	Effective surface albedo (middle of the day value) for wintertime (not in-
			cluding snow).
3	AlbedoMax	MU	Effective surface albedo (middle of the day value) for summertime.
4	Emissivity	MU	Effective surface emissivity.
5	StorageMin	MD	Minimum water storage capacity for upper surfaces (i.e. canopy).
6	StorageMax	MD	Maximum water storage capacity for upper surfaces (i.e. canopy)
7	WetThreshold	MD	Depth of water which determines whether evaporation occurs from a par-
			tially wet or completely wet surface [mm].
8	StateLimit	MD	Upper limit to the surface state. [mm]
9	DrainageEq	MD	Calculation choice for Drainage equation

continues on next page

Table 7.2 – continued from previous page

No.	Column Name	Use	Description
10	DrainageCoef1	MD	Coefficient D0 [mm h ⁻¹] used in <i>DrainageEq</i>
11	DrainageCoef2	MD	Coefficient b [-] used in <i>DrainageEq</i>
12	SoilTypeCode	L	Code for soil characteristics below this surface linking to Code of
			SUEWS_Soil.txt
13	SnowLimPatch	0	Limit for the snow water equivalent when snow cover starts to be patchy
			[mm]
14	SnowLimRemove	0	Limit of the snow water equivalent for snow removal from roads and roofs
			[mm]
15	OHMCode_SummerWet	L	Code for OHM coefficients to use for this surface during wet conditions in
			summer, linking to SUEWS_OHMCoefficients.txt.
16	OHMCode_SummerDry	L	Code for OHM coefficients to use for this surface during dry conditions in
			summer, linking to SUEWS_OHMCoefficients.txt.
17	OHMCode_WinterWet	L	Code for OHM coefficients to use for this surface during wet conditions in
			winter, linking to SUEWS_OHMCoefficients.txt.
18	OHMCode_WinterDry	L	Code for OHM coefficients to use for this surface during dry conditions in
			winter, linking to SUEWS_OHMCoefficients.txt.
19	OHMThresh_SW	MD	Temperature threshold determining whether summer/winter OHM coeffi-
			cients are applied [°C]
20	OHMThresh_WD	MD	Soil moisture threshold determining whether wet/dry OHM coefficients
			are applied [-]
21	ESTMCode	L	Code for ESTM coefficients linking to SUEWS_ESTMCoefficients.txt
22	AnOHM_Cp	MU	Volumetric heat capacity for this surface to use in AnOHM [J m ⁻³]
23	AnOHM_Kk	MU	Thermal conductivity for this surface to use in AnOHM [W m K ⁻¹]
24	AnOHM_Ch	MU	Bulk transfer coefficient for this surface to use in AnOHM [-]

An example *SUEWS_NonVeg.txt* can be found in the online version.

SUEWS_OHMCoefficients.txt

OHM, the Objective Hysteresis Model [Grimmond *et al.*, 1991] calculates the storage heat flux as a function of net all-wave radiation and surface characteristics.

- For each surface, OHM requires three model coefficients (a1, a2, a3). The three should be selected as a set.
- The **SUEWS OHMCoefficients.txt** file provides these coefficients for each surface type.
- A variety of values has been derived for different materials and can be found in the literature (see: Typical Values).
- · Coefficients can be changed depending on:
 - 1. surface wetness state (wet/dry) based on the calculated surface wetness state and soil moisture.
 - 2. season (summer/winter) based on a 5-day running mean air temperature.
- To use the same coefficients irrespective of wet/dry and summer/winter conditions, use the same code for all four OHM columns (OHMCode_SummerWet, OHMCode_SummerDry, OHMCode_WinterWet and OHMCode_WinterDry).

Note:

1. AnOHM (set in *RunControl.nml* by *StorageHeatMethod* = 3) does not use the coefficients specified in *SUEWS_OHMCoefficients.txt* but instead requires three parameters to be specified for each surface type

(including snow): heat capacity (AnOHM_Cp), thermal conductivity (AnOHM_Kk) and bulk transfer coefficient (AnOHM_Ch). These are specified in SUEWS_NonVeg.txt, SUEWS_Veg.txt, SUEWS_Water.txt and SUEWS_Snow.txt. No additional files are required for AnOHM.

2. AnOHM is under development in v2018b and should NOT be used!

No.	Column Name	Use	Description
1	Code	L	Code linking to a corresponding look-up table.
2	a1	MU	Coefficient for Q* term [-]
3	a2	MU	Coefficient for dQ*/dt term [h]
4	a3	MU	Constant term [W m ⁻²]

An example SUEWS_OHMCoefficients.txt can be found in the online version.

SUEWS_Profiles.txt

SUEWS_Profiles.txt specifies the daily cycle of variables related to human behaviour (energy use, water use and snow clearing). Different profiles can be specified for weekdays and weekends. The profiles are provided at hourly resolution here; the model will then linearly interpolate the profiles to the resolution of the model time step; some profiles may be normalized either by sum or by mean depending on the activity type while others not(see Normalisation method column of table below). Thus it does not matter whether columns 2-25 add up to, say 1, 24, or another number, because the model will eventually use the normalised values to rescale the results.

Note:

- 1. Currently, the snow clearing profiles are not interpolated as these are effectively a switch (0 for off and 1 for on).
- 2. If the anthropogenic heat flux and water use are specified in the met forcing file, the energy and water use profiles are ignored.

Activity	Description	Normali-	Week-	Week-	
		sation	day	end	
		method	option	option	
Energy	This profile, in junction with population density	mean	EnergyUse	P En£W ŊVUS6	ProfWE
use	(PopDensDay and PopDensNight), determines the overall				
	anthropogenic heat.				
Popula-	This profile, in junction with human activity	None	PopProfWD	PopProfWE	
tion	(ActivityProfWD and ActivityProfWE), determines the				
density	anthropogenic heat due to metabolism.				
Human	This profile, in junction with population density (PopProfWD	None	ActivityF	r A£WD vityF	rofWE
activity	and <i>PopProfWE</i>), determines the anthropogenic heat due to				
	metabolism.				
Traffic	This profile determines the anthropogenic heat due to traffic.	mean	TraffProf	WWraffProi	WE
Water use	This profile determines the irrigation under manual	sum	WaterUseF	r WaltenUWD F	rofManuWE
(manual)	operation.				
Water use	This profile determines the irrigation under automatic	sum	WaterUseF	r WakerUW BF	rofAutoWE
(auto-	operation.				
matic)					
Snow	This profile determines if snow removal is conducted at the	None	SnowClear	i 6gDw6FW A1	ingProfWE
removal	end of each hour.				

- Anthropogenic heat flux (weekday and weekend)
- Water use (weekday and weekend; manual and automatic irrigation)
- Snow removal (weekday and weekend)
- Human activity (weekday and weekend).

No.	Column Name	Use	Description
1	Code	L	Code linking to a corresponding look-up table.
2	2-25	MU	Multiplier for each hour of the day [-] for energy and water use. For
			SnowClearing, set those hours to 1 when snow removal from paved and
			roof surface is allowed (0 otherwise) if the snow removal limits set in the
			SUEWS_NonVeg.txt (SnowLimR emove column) are exceeded.

An example *SUEWS_Profiles.txt* can be found in the online version.

SUEWS_SiteSelect.txt

For each year and each grid, site specific surface cover information and other input parameters are provided to SUEWS by *SUEWS_SiteSelect.txt*. The model currently requires a new row for each year of the model run. All rows in this file will be read by the model and run.

No.	Column Name	Use	Description
1	Grid	MU	a unique number to represent grid
2	Year	MU	Year [YYYY]
3	StartDLS	MU	Start of the day light savings [DOY]
4	EndDLS	MU	End of the day light savings [DOY]
5	lat	MU	Latitude [deg].
6	lng	MU	longitude [deg]
7	Timezone	MU	Time zone [h] for site relative to UTC (east is positive). This should be set
			according to the times given in the meteorological forcing file(s).
8	SurfaceArea	MU	Area of the grid [ha].
9	Alt	MU	Altitude of grids [m].
10	Z	MU	Measurement height [m] for all atmospheric forcing variables set in
			SSss_YYYY_data_tt.txt.
11	id	MD	Day of year [DOY]
12	ih	MD	Hour [H]
13	imin	MD	Minute [M]
14	Fr_Paved	MU	Surface cover fraction of <i>Paved</i> surfaces [-]
15	Fr_Bldgs	MU	Surface cover fraction of buildings [-]
16	Fr_EveTr	MU	Surface cover fraction of <i>EveTr</i> : evergreen trees and shrubs [-]
17	Fr_DecTr	MU	Surface cover fraction of deciduous trees and shrubs [-]
18	Fr_Grass	MU	Surface cover fraction of <i>Grass</i> [-]
19	Fr_Bsoil	MU	Surface cover fraction of bare soil or unmanaged land [-]
20	Fr_Water	MU	Surface cover fraction of open water [-]
21	IrrFr_Paved	MU	Fraction of <i>Paved</i> that is irrigated [-]
22	IrrFr_Bldgs	MU	Fraction of <i>Bldgs</i> that is irrigated [-]
23	IrrFr_EveTr	MU	Fraction of <i>EveTr</i> that is irrigated [-]
24	IrrFr_DecTr	MU	Fraction of <i>DecTr</i> that is irrigated [-]
25	IrrFr_Grass	MU	Fraction of <i>Grass</i> that is irrigated [-]
26	IrrFr_BSoil	MU	Fraction of BSoil that is irrigated [-]
			continues on next page

continues on next page

Table 7.3 – continued from previous page

No.	Column Name		Description
27	IrrFr_Water	MU	Fraction of <i>Water</i> that is irrigated [-]
28	H_Bldgs	MU	Mean building height [m]
29	H_EveTr	MU	Mean height of evergreen trees [m]
30	H_DecTr	MU	Mean height of deciduous trees [m]
31	z0	0	Roughness length for momentum [m]
32	zd	0	Zero-plane displacement [m]
33	FAI_Bldgs	0	Frontal area index for buildings [-]
34	FAI_EveTr	0	Frontal area index for evergreen trees [-]
35	FAI_DecTr	0	Frontal area index for deciduous trees [-]
36	PopDensDay	0	Daytime population density (i.e. workers, tourists) [people ha ⁻¹]
37	PopDensNight	0	Night-time population density (i.e. residents) [people ha ⁻¹]
38	TrafficRate_WD	0	Weekday traffic rate [veh km m ⁻² s-1] Can be used for CO2 flux calculation
	11 4111 6144 6 6_113		- not used in v2018a.
39	TrafficRate_WE	0	Weekend traffic rate [veh km m ⁻² s-1] Can be used for CO2 flux calculation
			- not used in v2018a.
40	QF0_BEU_WD	0	Building energy use [W m ⁻²]
41	QF0_BEU_WE	0	Building energy use [W m ⁻²]
42	Code_Paved	L	Code for Paved surface characteristics linking to Code of
			SUEWS_NonVeg.txt
43	Code_Bldgs	L	Code for Bldgs surface characteristics linking to Code of
			SUEWS_NonVeg.txt
44	Code_EveTr	L	Code for <i>EveTr</i> surface characteristics linking to <i>Code</i> of <i>SUEWS_Veg.txt</i>
45	Code_DecTr	L	Code for <i>DecTr</i> surface characteristics linking to <i>Code</i> of <i>SUEWS_Veg.txt</i>
46	Code_Grass	L	Code for <i>Grass</i> surface characteristics linking to <i>Code</i> of <i>SUEWS_Veg.txt</i>
47	Code_BSoil	L	Code for BSoil surface characteristics linking to Code of
			SUEWS_NonVeg.txt
48	Code_Water	L	Code for Water surface characteristics linking to Code of
			SUEWS_Water.txt
49	LUMPS_DrRate	MD	Drainage rate of bucket for LUMPS [mm h ⁻¹]
50	LUMPS_Cover	MD	Limit when surface totally covered with water for LUMPS [mm]
51	LUMPS_MaxRes	MD	Maximum water bucket reservoir [mm] Used for LUMPS surface wetness
			control.
52	NARP_Trans	MD	Atmospheric transmissivity for NARP [-]
53	CondCode	L	Code for surface conductance parameters linking to Code of
			SUEWS_Conductance.txt
54	SnowCode	L	Code for snow surface characteristics linking to Code of
			SUEWS_Snow.txt
55	SnowClearingProfWD	L	Code for snow clearing profile (weekdays) linking to Code of
			SUEWS_Profiles.txt.
56	SnowClearingProfWE	L	Code for snow clearing profile (weekends) linking to Code of
	And become a fine of	1	SUEWS_Profiles.txt.
57	AnthropogenicCode	L	Code for modelling anthropogenic heat flux linking to <i>Code</i> of
			SUEWS_AnthropogenicEmission.txt, which contains the model co-
			efficients for estimation of the anthropogenic heat flux (used if
58	TraigationCodo	L	EmissionsMethod = 1, 2 in RunControl.nml). Code for modelling irrigation linking to Code of SUEWS_Irrigation.txt
59	IrrigationCode WaterUseProfManuWD	L	Code for water use profile (manual irrigation, weekdays) linking to <i>Code</i>
39	wa ter useri OIHaHuWD	L	of SUEWS_Profiles.txt.
60	WaterUseProfManuWE	L	Code for water use profile (manual irrigation, weekends) linking to <i>Code</i>
00	water user ruthanuwe	L	of SUEWS_Profiles.txt.
			continues on next nage

continues on next page

Table 7.3 – continued from previous page

No.	Column Name		Description
61	WaterUseProfAutoWD	L	Code for water use profile (automatic irrigation, weekdays) linking to <i>Code</i>
01	water oser romatows		of SUEWS_Profiles.txt. Value of integer is arbitrary but must match code
			specified in Code of SUEWS_Profiles.txt.
(2)	Electronic Description	7	
62	WaterUseProfAutoWE	L	Code for water use profile (automatic irrigation, weekends) linking to
			Code of SUEWS_Profiles.txt. Value of integer is arbitrary but must match
			code specified in <i>Code</i> of <i>SUEWS_Profiles.txt</i> .
63	FlowChange	MD	Difference in input and output flows for water surface [mm h ⁻¹]
64	RunoffToWater	MD	Fraction of above-ground runoff flowing to water surface during flooding
		MU	[-]
65	PipeCapacity	MD	Storage capacity of pipes [mm]
		MU	
66	GridConnection1of8	MD	Number of the 1st grid where water can flow to
		MU	Ç
67	Fraction1of8	MD	Fraction of water that can flow to GridConnection1of8 [-]
		MU	Transient of water and the defendence of the
68	GridConnection2of8	MD	Number of the 2nd grid where water can flow to
	di ideoiniec cionzoio	MU	Number of the 2nd grid where water can now to
60	Fraction2of8		Enaction of water that are flower Conid Common time 20 CO []
69	Fraction2018	MD	Fraction of water that can flow to GridConnection2of8 [-]
70	6 1 16	MU	N. 1. 64 0.1 11 1
70	GridConnection3of8	MD	Number of the 3rd grid where water can flow to
		MU	
71	Fraction3of8	MD	Fraction of water that can flow to GridConnection3of8 [-]
		MU	
72	GridConnection4of8	MD	Number of the 4th grid where water can flow to
		MU	
73	Fraction4of8	MD	Fraction of water that can flow to GridConnection4of8 [-]
		MU	
74	GridConnection5of8	MD	Number of the 5th grid where water can flow to
		MU	
75	Fraction5of8	MD	Fraction of water that can flow to GridConnection5of8 [-]
		MU	
76	GridConnection6of8	MD	Number of the 6th grid where water can flow to
, 0	di ideoiniee ei onooio	MU	Trained of the our gra where water can now to
77	Fraction6of8	MD	Fraction of water that can flow to <i>GridConnection6of8</i> [-]
' '	1140010010	MU	Traction of water that can now to difficulties (1010016 [-]
70	CridCorrection7-50		Number of the 7th and where water and for the
78	GridConnection7of8	MD	Number of the 7th grid where water can flow to
70		MU	
79	Fraction7of8	MD	Fraction of water that can flow to GridConnection7of8 [-]
		MU	
80	GridConnection8of8	MD	Number of the 8th grid where water can flow to
		MU	
81	Fraction8of8	MD	Fraction of water that can flow to GridConnection8of8 [-]
		MU	
82	WithinGridPavedCode	L	Code that links to the fraction of water that flows from <i>Paved</i> surfaces to
			surfaces in columns 2-10 of SUEWS_WithinGridWaterDist.txt.
83	WithinGridBldgsCode	L	Code that links to the fraction of water that flows from <i>Bldgs</i> surfaces to
	c rabragocoac	~	surfaces in columns 2-10 of SUEWS_WithinGridWaterDist.txt
84	WithinGridEveTrCode	L	Code that links to the fraction of water that flows from <i>EveTr</i> surfaces to
04	MI CHILIGI TUEVETI COUE	L	
			surfaces in columns 2-10 of SUEWS_WithinGridWaterDist.txt.

continues on next page

No.	Column Name	Use	Description
85	WithinGridDecTrCode	L	Code that links to the fraction of water that flows from <i>DecTr</i> surfaces to
			surfaces in columns 2-10 of SUEWS_WithinGridWaterDist.txt.
86	WithinGridGrassCode	L	Code that links to the fraction of water that flows from Grass surfaces to
			surfaces in columns 2-10 of SUEWS_WithinGridWaterDist.txt.
87	WithinGridBSoilCode	L	Code that links to the fraction of water that flows from BSoil surfaces to
			surfaces in columns 2-10 of SUEWS_WithinGridWaterDist.txt.
88	WithinGridWaterCode	L	Code that links to the fraction of water that flows from Water surfaces to
			surfaces in columns 2-10 of SUEWS_WithinGridWaterDist.txt.
89	AreaWall	MU	Area of wall within grid (needed for ESTM calculation) [m ²].
90	Fr_ESTMClass_Paved1	MU	Surface cover fraction of <i>Paved</i> surface class 1 used in ESTM calculations
91	Fr_ESTMClass_Paved2	MU	Surface cover fraction of <i>Paved</i> surface class 2 used in ESTM calculations
92	Fr_ESTMClass_Paved3	MU	Surface cover fraction of <i>Paved</i> surface class 3 used in ESTM calculations
93	Code_ESTMClass_Paved1	L	Code linking to SUEWS_ESTMCoefficients.txt
94	Code_ESTMClass_Paved2	L	Code linking to SUEWS_ESTMCoefficients.txt
95	Code_ESTMClass_Paved3	L	Code linking to SUEWS_ESTMCoefficients.txt
96	Fr_ESTMClass_Bldgs1	MU	Surface cover fraction of building class 1 used in ESTM calculations
97	Fr_ESTMClass_Bldgs2	MU	Surface cover fraction of building class 2 used in ESTM calculations
98	Fr_ESTMClass_Bldgs3	MU	Surface cover fraction of building class 3 used in ESTM calculations
99	Fr_ESTMClass_Bldgs4	MU	Surface cover fraction of building class 4 used in ESTM calculations
100	Fr_ESTMClass_Bldgs5	MU	Surface cover fraction of building class 5 used in ESTM calculations
101	Code_ESTMClass_Bldgs1		Code linking to SUEWS_ESTMCoefficients.txt
102	Code_ESTMClass_Bldgs2	L	Code linking to SUEWS_ESTMCoefficients.txt
103	Code_ESTMClass_Bldgs3	L	Code linking to SUEWS_ESTMCoefficients.txt
104	Code_ESTMClass_Bldgs4	L	Code linking to SUEWS_ESTMCoefficients.txt
105	Code_ESTMClass_Bldgs5	L	Code linking to SUEWS_ESTMCoefficients.txt

Table 7.3 – continued from previous page

Attention:

- Two rows of -9 should be placed at end of this file.
- In this file the **column order is important**.
- Surface cover fractions specified from Fr_Paved to Fr_Water should sum up to 1.
- Surface cover fractions specified from Fr_ESTMClass_Paved1 to Fr_ESTMClass_Paved3 should sum up to 1.
- Surface cover fractions specified from Fr_ESTMClass_Bldgs1 to Fr_ESTMClass_Bldgs5 should sum up to 1.
- In this file the **row order is important** for simulations of **multiple grids and multiple years**. Ensure the rows in are arranged so that all grids for a particular year appear on consecutive lines (rather than grouping all years together for a particular grid). See below for a valid example:

```
Grid Year ...

1 2001 ...

2 2001 ...

1 2002 ...

2 2002 ...
```

Tip: ! can be used to indicate comments in the file. Comments are not read by the programme so they can be used

by the user to provide notes for their interpretation of the contents. This is strongly recommended.

Day Light Savings (DLS)

The dates for DLS normally vary for each year and country as they are often associated with a specific set of Sunday mornings at the beginning of summer and autumn. Note it is important to remember leap years. You can check http://www.timeanddate.com/time/dst/ for your city.

Tip: If DLS does not occur give a start and end day immediately after it. Make certain the dummy dates are correct for the hemisphere

For northern hemisphere, use: 180 181
For southern hemisphere, use: 365 1

Example when running multiple years (in this case 2008 and 2009 in Canada):

Year	start of daylight savings	end of daylight savings
2008	170	240
2009	172	242

Grid Connections (water flow between grids)

Caution:

- · Not available in this version.
- columns between *GridConnection1of8* and *GridConnection8of8* in *SUEWS_SiteSelect.txt* can be set to zero.

This section gives an example of water flow between grids, calculated based on the relative elevation of the grids and length of the connecting surface between adjacent grids. For the square grids in the figure, water flow is assumed to be zero between diagonally adjacent grids, as the length of connecting surface linking the grids is very small. Model grids need not be square or the same size.

The table gives example values for the grid connections part of *SUEWS_SiteSelect.txt* for the grids shown in the figure. For each row, only water flowing out of the current grid is entered (e.g. water flows from 234 to 236 and 237, with a larger proportion of water flowing to 237 because of the greater length of connecting surface between 234 and 237 than between 234 and 236. No water is assumed to flow between 234 and 233 or 235 because there is no elevation difference between these grids. Grids 234 and 238 are at the same elevation and only connect at a point, so no water flows between them. Water enters grid 234 from grids 230, 231 and 232 as these are more elevated.

Note: Arrows indicate the water flow in to and out of grid 234, but note that only only water flowing out of each grid is entered in *SUEWS_SiteSelect.txt*

An example *SUEWS_SiteSelect.txt* can be found in the online version.

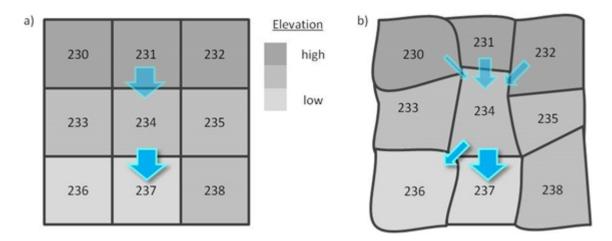


Fig. 7.1: Example grid connections showing water flow between grids.

Grid	GridConnection 10f8	Fraction1of8	GridConnection 20f8	Fraction2of8	GridConnection 3of8	Fraction3of8	GridConnection 4of8	Fraction4of8	GridConnection Sof8	Fraction5of8	GridConnection 6of8	Fraction6of8	GridConnection 7of8	Fraction7of8	GridConnection 8of8	Fraction8of8
230	233	0.90	234	0.10	0	0	0	0	0	0	0	0	0	0	0	0
231	234	1.00	0	0	0	0	0	0	0	0	0	0	0	0	0	0
232	234	0.20	235	0.80	0	0	0	0	0	0	0	0	0	0	0	0
233	236	1.00	0	0	0	0	0	0	0	0	0	0	0	0	0	0
234	236	0.10	237	0.90	0	0	0	0	0	0	0	0	0	0	0	0
235	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
236	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
237	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
238	237	1.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Fig. 7.2: Example values for the grid connections part of *SUEWS_SiteSelect.txt* for the grids.

SUEWS_Snow.txt

SUEWS_Snow.txt specifies the characteristics for snow surfaces when <code>SnowUse=1</code> in <code>RunControl.nml</code>. If the snow part of the model is not run, fill this table with '-999' except for the first (Code) column and set <code>SnowUse=0</code> in <code>RunControl.nml</code>. For a detailed description of the variables, see Järvi et al. (2014) [Järvi et al., 2014].

No.	Column Name	Use	Description
1	Code	L	Code linking to a corresponding look-up table.
2	RadMeltFactor	MU	Hourly radiation melt factor of snow [mm W ⁻¹ h ⁻¹]
3	TempMeltFactor	MU	Hourly temperature melt factor of snow [mm K ⁻¹ h ⁻¹]
4	AlbedoMin	MU	Effective surface albedo (middle of the day value) for wintertime (not in-
			cluding snow).
5	AlbedoMax	MU	Effective surface albedo (middle of the day value) for summertime.
6	Emissivity	MU	Effective surface emissivity.
7	tau_a	MD	Time constant for snow albedo aging in cold snow [-]
8	tau_f	MD	Time constant for snow albedo aging in melting snow [-]
9	PrecipLimAlb	MD	Limit for hourly precipitation when the ground is fully covered with snow
			[mm]
10	SnowDensMin	MD	Fresh snow density [kg m ⁻³]
11	SnowDensMax	MD	Maximum snow density [kg m ⁻³]
12	tau_r	MD	Time constant for snow density ageing [-]
13	CRWMin	MD	Minimum water holding capacity of snow [mm]
14	CRWMax	MD	Maximum water holding capacity of snow [mm]
15	PrecipLimSnow	MD	Temperature limit when precipitation falls as snow [°C]
16	OHMCode_SummerWet	L	Code for OHM coefficients to use for this surface during wet conditions in
			summer, linking to SUEWS_OHMCoefficients.txt.
17	OHMCode_SummerDry	L	Code for OHM coefficients to use for this surface during dry conditions in
			summer, linking to SUEWS_OHMCoefficients.txt.
18	OHMCode_WinterWet	L	Code for OHM coefficients to use for this surface during wet conditions in
			winter, linking to SUEWS_OHMCoefficients.txt.
19	OHMCode_WinterDry	L	Code for OHM coefficients to use for this surface during dry conditions in
			winter, linking to SUEWS_OHMCoefficients.txt.
20	OHMThresh_SW	MD	Temperature threshold determining whether summer/winter OHM coeffi-
			cients are applied [°C]
21	OHMThresh_WD	MD	Soil moisture threshold determining whether wet/dry OHM coefficients
			are applied [-]
22	ESTMCode	L	Code for ESTM coefficients linking to SUEWS_ESTMCoefficients.txt
23	AnOHM_Cp	MU	Volumetric heat capacity for this surface to use in AnOHM [J m ⁻³]
24	AnOHM_Kk	MU	Thermal conductivity for this surface to use in AnOHM [W m K ⁻¹]
25	AnOHM_Ch	MU	Bulk transfer coefficient for this surface to use in AnOHM [-]

An example *SUEWS_Snow.txt* can be found in the online version.

SUEWS_Soil.txt

SUEWS_Soil.txt specifies the characteristics of the sub-surface soil below each of the non-water surface types (Paved, Bldgs, EveTr, DecTr, Grass, BSoil). The model does not have a soil store below the water surfaces. Note that these sub-surface soil stores are different to the bare soil/unmamnaged surface cover type. Each of the non-water surface types need to link to soil characteristics specified here. If the soil characteristics are assumed to be the same for all surface types, use a single code value to link the characteristics here with the SoilTypeCode columns in SUEWS_NonVeg.txt and SUEWS_Veg.txt.

Soil moisture can either be provided using observational data in the met forcing file (the xsmd column when SMDMethod = 1 or 2 in RunControl.nml) and providing some soil properties here, or modelled by SUEWS (SMDMethod = 0 in RunControl.nml).

No.	Column Name	Use	Description
1	Code	L	Code linking to a corresponding look-up table.
2	SoilDepth	MD	Depth of soil beneath the surface [mm]
3	SoilStoreCap	MD	Limit value for SoilDepth [mm]
4	SatHydraulicCond	MD	Hydraulic conductivity for saturated soil [mm s ⁻¹]
5	SoilDensity	MD	Soil density [kg m ⁻³]
6	InfiltrationRate	0	Infiltration rate.
7	OBS_SMDepth	0	The depth of soil moisture measurements. [mm]
8	OBS_SMCap	0	The maximum observed soil moisture. [m ³ m ⁻³ or kg kg ⁻¹]
9	OBS_SoilNotRocks	0	Fraction of soil without rocks. [-]

An example SUEWS Soil.txt can be found in the online version.

SUEWS Veg.txt

SUEWS_Veg.txt specifies the characteristics for the vegetated surface cover types (EveTr, DecTr, Grass) by linking codes in column 1 of SUEWS_Veg.txt to the codes specified in *SUEWS_SiteSelect.txt* (Code_EveTr, Code_DecTr, Code_Grass). Each row should correspond to a particular surface type. For suggestions on how to complete this table, see: *Typical Values*.

No.	Column Name	Use	Description
1	Code	L	Code linking to a corresponding look-up table.
2	AlbedoMin	MU	Effective surface albedo (middle of the day value) for wintertime (not in-
			cluding snow).
3	AlbedoMax	MU	Effective surface albedo (middle of the day value) for summertime.
4	Emissivity	MU	Effective surface emissivity.
5	StorageMin	MD	Minimum water storage capacity for upper surfaces (i.e. canopy).
6	StorageMax	MD	Maximum water storage capacity for upper surfaces (i.e. canopy)
7	WetThreshold	MD	Depth of water which determines whether evaporation occurs from a par-
			tially wet or completely wet surface [mm].
8	StateLimit	MD	Upper limit to the surface state. [mm]
9	DrainageEq	MD	Calculation choice for Drainage equation
10	DrainageCoef1	MD	Coefficient D0 [mm h ⁻¹] used in <i>DrainageEq</i>
11	DrainageCoef2	MD	Coefficient b [-] used in <i>DrainageEq</i>
12	SoilTypeCode	L	Code for soil characteristics below this surface linking to Code of
			SUEWS_Soil.txt
13	SnowLimPatch	0	Limit for the snow water equivalent when snow cover starts to be patchy
			[mm]

continues on next page

Table 7.5 – continued from previous page

No.	Column Name	Use	Description
14	BaseT	MU	Base Temperature for initiating growing degree days (GDD) for leaf
			growth. [°C]
15	BaseTe	MU	Base temperature for initiating sensesance degree days (SDD) for leaf off.
			[°C]
16	GDDFul1	MU	The growing degree days (GDD) needed for full capacity of the leaf area
			index (LAI) [°C].
17	SDDFull	MU	The sensesence degree days (SDD) needed to initiate leaf off. [°C]
18	LAIMin	MD	leaf-off wintertime value
19	LAIMax	MD	full leaf-on summertime value
20	PorosityMin	MD	leaf-off wintertime value Used only for <i>DecTr</i> (can affect roughness cal-
			culation)
21	PorosityMax	MD	full leaf-on summertime value Used only for <i>DecTr</i> (can affect roughness
			calculation)
22	MaxConductance	MD	The maximum conductance of each vegetation or surface type. [mm s ⁻¹]
23	LAIEq	MD	LAI calculation choice.
24	LeafGrowthPower1	MD	a parameter required by LAI calculation in LAIEq
25	LeafGrowthPower2	MD	a parameter required by LAI calculation [K ⁻¹] in LAIEq
26	LeafOffPower1	MD	a parameter required by LAI calculation [K ⁻¹] in LAIEq
27	LeafOffPower2	MD	a parameter required by LAI calculation [K ⁻¹] in LAIEq
28	OHMCode_SummerWet	L	Code for OHM coefficients to use for this surface during wet conditions in
			summer, linking to SUEWS_OHMCoefficients.txt.
29	OHMCode_SummerDry	L	Code for OHM coefficients to use for this surface during dry conditions in
			summer, linking to SUEWS_OHMCoefficients.txt.
30	OHMCode_WinterWet	L	Code for OHM coefficients to use for this surface during wet conditions in
		_	winter, linking to SUEWS_OHMCoefficients.txt.
31	OHMCode_WinterDry	L	Code for OHM coefficients to use for this surface during dry conditions in
22	ornemi i cri	1470	winter, linking to SUEWS_OHMCoefficients.txt.
32	OHMThresh_SW	MD	Temperature threshold determining whether summer/winter OHM coeffi-
22	OTHER 1 TO	WD	cients are applied [°C]
33	OHMThresh_WD	MD	Soil moisture threshold determining whether wet/dry OHM coefficients
2.4	ECTMC - 1	T	are applied [-]
34	ESTMCode ArrOUM Con	L	Code for ESTM coefficients linking to SUEWS_ESTMCoefficients.txt
35	AnOHM_Cp	MU	Volumetric heat capacity for this surface to use in AnOHM [J m ⁻³]
36	AnOHM_Kk	MU	Thermal conductivity for this surface to use in AnOHM [W m K ⁻¹]
37	AnOHM_Ch	MU	Bulk transfer coefficient for this surface to use in AnOHM [-]
38	BiogenCO2Code	MU	Code linking to the <i>Code</i> column in <i>SUEWS_BiogenCO2.txt</i> .

An example SUEWS_Veg.txt can be found in the online version.

SUEWS_Water.txt

SUEWS_Water.txt specifies the characteristics for the water surface cover type by linking codes in column 1 of SUEWS_Water.txt to the codes specified in SUEWS_SiteSelect.txt (Code_Water).

No.	Column Name	Use	Description
1	Code	L	Code linking to a corresponding look-up table.
2	AlbedoMin	MU	Effective surface albedo (middle of the day value) for wintertime (not in-
			cluding snow).
3	AlbedoMax	MU	Effective surface albedo (middle of the day value) for summertime.

continues on next page

Table 7.6 – continued from previous page

No.	Column Name	Use	Description		
4	Emissivity	MU	Effective surface emissivity.		
5	StorageMin	MD	Minimum water storage capacity for upper surfaces (i.e. canopy).		
6	StorageMax	MD	Maximum water storage capacity for upper surfaces (i.e. canopy)		
7	WetThreshold	MD	Depth of water which determines whether evaporation occurs from a par-		
			tially wet or completely wet surface [mm].		
8	StateLimit	MU	Upper limit to the surface state. [mm]		
9	WaterDepth	MU	Water depth [mm].		
10	DrainageEq	MD	Calculation choice for Drainage equation		
11	DrainageCoef1	MD	Coefficient D0 [mm h ⁻¹] used in <i>DrainageEq</i>		
12	DrainageCoef2	MD	Coefficient b [-] used in <i>DrainageEq</i>		
13	OHMCode_SummerWet	L	Code for OHM coefficients to use for this surface during wet conditions in		
			summer, linking to SUEWS_OHMCoefficients.txt.		
14	OHMCode_SummerDry	L	Code for OHM coefficients to use for this surface during dry conditions in		
			summer, linking to SUEWS_OHMCoefficients.txt.		
15	OHMCode_WinterWet	L	Code for OHM coefficients to use for this surface during wet conditions in		
			winter, linking to SUEWS_OHMCoefficients.txt.		
16	OHMCode_WinterDry	L	Code for OHM coefficients to use for this surface during dry conditions in		
			winter, linking to SUEWS_OHMCoefficients.txt.		
17	OHMThresh_SW	MD	Temperature threshold determining whether summer/winter OHM coeffi-		
			cients are applied [°C]		
18	OHMThresh_WD	MD	Soil moisture threshold determining whether wet/dry OHM coefficients		
			are applied [-]		
19	ESTMCode	L	Code for ESTM coefficients linking to SUEWS_ESTMCoefficients.txt		
20	AnOHM_Cp	MU	Volumetric heat capacity for this surface to use in AnOHM [J m ⁻³]		
21	AnOHM_Kk	MU	Thermal conductivity for this surface to use in AnOHM [W m K ⁻¹]		
22	AnOHM_Ch	MU	Bulk transfer coefficient for this surface to use in AnOHM [-]		

An example SUEWS_Water.txt can be found in the online version.

SUEWS_WithinGridWaterDist.txt

SUEWS_WithinGridWaterDist.txt specifies the movement of water between surfaces within a grid/area. It allows impervious connectivity to be taken into account.

Each row corresponds to a surface type (linked by the Code in column 1 to the *SUEWS_SiteSelect.txt* columns: WithinGridPavedCode, WithinGridBldgsCode, ..., WithinGridWaterCode). Each column contains the fraction of water flowing from the surface type to each of the other surface types or to runoff or the sub-surface soil store.

Note:

- The sum of each row (excluding the Code) must equal 1.
- Water CANNOT flow from one surface to that same surface, so the diagonal elements should be zero.
- The row corresponding to the water surface should be zero, as there is currently no flow permitted from the water surface to other surfaces by the model.
- Currently water **CANNOT** go to both runoff and soil store (i.e. it must go to one or the other *Runoff* for impervious surfaces; *SoilStore* for pervious surfaces).

In the table below, for example,

- All flow from paved surfaces goes to runoff;
- 90% of flow from buildings goes to runoff, with small amounts going to other surfaces (mostly paved surfaces as buildings are often surrounded by paved areas);
- All flow from vegetated and bare soil areas goes into the sub-surface soil store;
- The row corresponding to water contains zeros (as it is currently not used).

No.	Column Name	Use	Description
1	ToPaved	MU	Fraction of water going to Paved
2	ToBldgs	MU	Fraction of water going to Bldgs
3	ToEveTr	MU	Fraction of water going to <i>EveTr</i>
4	ToDecTr	MU	Fraction of water going to DecTr
5	ToGrass	MU	Fraction of water going to <i>Grass</i>
6	ToBSoil	MU	Fraction of water going to BSoil
7	ToWater	MU	Fraction of water going to Water
8	ToRunoff	MU	Fraction of water going to Runoff
9	ToSoilStore	MU	Fraction of water going to SoilStore

An example SUEWS_WithinGridWaterDist.txt can be found in the online version.

Input Options

a1

Description Coefficient for Q* term [-]

Configuration

Referencing Table	Require- ment	Comment
SUEWS_OHMCoefficients.txt	MU	Coefficient for Q* term [-]

a2

Description Coefficient for dQ*/dt term [h]

Configuration

Referencing Table	Require-	Comment
	ment	
SUEWS_OHMCoefficients.txt	MU	Coefficient for dQ*/dt term [h]

a3

Description Constant term [W m⁻²]

Configuration

Referencing Table	Require- ment	Comment
SUEWS_OHMCoefficients.txt	MU	Constant term [W m ⁻²]

ActivityProfWD

Description Code linking to ActivityProfWD in SUEWS_Profiles.txt.

Configuration

Referencing Table	Require- ment	Comment
SUEWS_AnthropogenicEmission.txt	L	Code for human activity profile (weekdays) Provides the link to column 1 of <i>SUEWS_Profiles.txt</i> . Value of integer is arbitrary but must match code specified in column 1 of <i>SUEWS_Profiles.txt</i> . Used for CO2 flux calculation.

ActivityProfWE

Description Code linking to *ActivityProfWE* in *SUEWS_Profiles.txt*.

Configuration

Referencing Table	Require-	Comment
	ment	
SUEWS_AnthropogenicEmission.txt	L	Code for human activity profile
		(weekends) Provides the link to
		column 1 of SUEWS_Profiles.txt.
		Look the codes Value of inte-
		ger is arbitrary but must match
		code specified in column 1 of
		SUEWS_Profiles.txt. Used for
		CO2 flux calculation.

AHMin_WD

Description Minimum QF on weekdays [W m⁻²]

Configuration

Referencing Table	Require- ment	Comment
SUEWS_AnthropogenicEmission.txt	MU O	Use with EmissionsMethod = 1

AHMin_WE

Description Minimum QF on weekends [W m⁻²]

Configuration

Referencing Table	Require- ment	Comment
SUEWS_AnthropogenicEmission.txt	MU O	Use with EmissionsMethod = 1

AHSlope_Heating_WD

Description Heating slope of QF on weekdays [W m⁻² K⁻¹]

Configuration

Referencing Table	Require- ment	Comment
SUEWS_AnthropogenicEmission.txt	MU O	Use with EmissionsMethod = 1

AHSlope_Heating_WE

Description Heating slope of QF on weekends [W m⁻² K⁻¹]

Configuration

Referencing Table		Require- ment	Comment
SUEWS_Anthropogeni	cEmission.txt	MU O	Use with $EmissionsMethod = 1$

AHSlope_Cooling_WD

Description Cooling slope of QF on weekdays [W m⁻² K⁻¹]

Configuration

Referencing Table	Require-	Comment
	ment	
SUEWS_AnthropogenicEmission.txt	MU O	Use with EmissionsMethod = 1

AHSlope_Cooling_WE

Description Cooling slope of QF on weekends [W m⁻² K⁻¹]

Configuration

Referencing Table	Require-	Comment
	ment	
SUEWS_AnthropogenicEmission.txt	MU O	Use with EmissionsMethod = 1

AlbedoMax

Description Effective surface albedo (middle of the day value) for summertime.

Configuration

Referencing Table	Require-	Comment
	ment	
SUEWS_NonVeg.txt	MU	Effective surface albedo (middle
		of the day value) for summertime.
		View factors should be taken into
		account.

continues on next page

Table 7.18 – continued from previous page

Referencing Table	Require- ment	Comment
SUEWS_Veg.txt	MU	Example values [-] • 0.1 EveTr [Oke, 2002] • 0.18 DecTr [Oke, 2002] • 0.21 Grass [Oke, 2002]
SUEWS_Water.txt	MU	Example values [-] • 0.1 Water [Oke, 2002]
SUEWS_Snow.txt	MU	Example values [-] • 0.85 [Järvi <i>et al.</i> , 2014]

AlbedoMin

Description Effective surface albedo (middle of the day value) for wintertime (not including snow). **Configuration**

Referencing Table	Require- ment	Comment
SUEWS_NonVeg.txt	MU	Not currently used for non-vegetated surfaces – set the same as AlbedoMax.
SUEWS_Veg.txt	MU	 Example values [-] 0.1 EveTr [Oke, 2002] 0.18 DecTr [Oke, 2002] 0.21 Grass [Oke, 2002]
SUEWS_Water.txt	MU	Not currently used for water surface - set same as AlbedoMax.
SUEWS_Snow.txt	MU	Example values [-] • 0.18 [Järvi <i>et al.</i> , 2014]

alpha

Description The mean apparent ecosystem quantum. Represents the initial slope of the light-response curve. [umol CO2 umol photons^-1]

Configuration

Referencing Table	Require-	Comment
	ment	
SUEWS_BiogenCO2.txt	MU O	Example values:
		EmissionsMethod = 11,
		12, 13, 14, 15 or 16:
		• 0.044 [Ruimy <i>et al.</i> , 1995]
		• 0.0593 [Schmid, 2000]
		• 0.0205 [Flanagan <i>et al.</i> ,
		2002]
		EmissionsMethod = 21, 22, 23,
		24, 25, or 26: 0.031 [Bellucco et
		al., 2017] EmissionsMethod =
		31, 32, 33, 34, 35, 36: 0.005 [Bel-
		lucco et al., 2017]

Alt

Description Altitude of grids [m].

Configuration

Referencing Table	Require-	Comment
	ment	
SUEWS_SiteSelect.txt	MU	Used for both the radiation and
		water flow between grids. Not
		available in this version.

AnOHM_Ch

 $\textbf{Description} \ \ \text{Bulk transfer coefficient for this surface to use in AnOHM [-]}$

Configuration

Referencing Table	Require-	Comment
	ment	
SUEWS_NonVeg.txt	MU	Bulk transfer coefficient for this
		surface to use in AnOHM [-]
SUEWS_Veg.txt	MU	Bulk transfer coefficient for this
		surface to use in AnOHM [-]
SUEWS_Water.txt	MU	Bulk transfer coefficient for this
		surface to use in AnOHM [-]
SUEWS_Snow.txt	MU	Bulk transfer coefficient for this
		surface to use in AnOHM [-]

AnOHM_Cp

 $\textbf{Description} \ \ \text{Volumetric heat capacity for this surface to use in AnOHM [J m$^{-3}$]}$

Referencing Table	Require-	Comment
	ment	
SUEWS_NonVeg.txt	MU	Volumetric heat capacity for this
		surface to use in AnOHM [J m ⁻³]
SUEWS_Veg.txt	MU	Volumetric heat capacity for this
		surface to use in AnOHM [J m ⁻³]
SUEWS_Water.txt	MU	Volumetric heat capacity for this
		surface to use in AnOHM [J m ⁻³]
SUEWS_Snow.txt	MU	Volumetric heat capacity for this
		surface to use in AnOHM [J m ⁻³]

AnOHM_Kk

 $\begin{tabular}{ll} \textbf{Description} & Thermal conductivity for this surface to use in AnOHM [W m K^{-1}] \\ \textbf{Configuration} & \end{tabular}$

Referencing Table	Require-	Comment
	ment	
SUEWS_NonVeg.txt	MU	Thermal conductivity for this sur-
		face to use in AnOHM [W m K ⁻¹]
SUEWS_Veg.txt	MU	Thermal conductivity for this sur-
		face to use in AnOHM [W m K ⁻¹]
SUEWS_Water.txt	MU	Thermal conductivity for this sur-
		face to use in AnOHM [W m K ⁻¹]
SUEWS_Snow.txt	MU	Thermal conductivity for this sur-
		face to use in AnOHM [W m K ⁻¹]

AnthropogenicCode

Description Code for modelling anthropogenic heat flux linking to *Code* of *SUEWS_AnthropogenicEmission.txt*, which contains the model coefficients for estimation of the anthropogenic heat flux (used if *EmissionsMethod* = 1, 2 in *RunControl.nml*).

Configuration

Referencing Table	Require-	Comment
	ment	
SUEWS_SiteSelect.txt	L	Value of integer is arbi-
		trary but must match code
		specified in column 1 of
		SUEWS_AnthropogenicEmission.txt

AreaWall

 $\boldsymbol{Description}\;$ Area of wall within grid (needed for ESTM calculation) [m^2].

Configuration

Referencing Table	Require- ment	Comment
SUEWS_SiteSelect.txt	MU	Area of wall within grid (needed for ESTM calculation). [m ²]

BaseT

Description Base Temperature for initiating growing degree days (GDD) for leaf growth. [°C] **Configuration**

Referencing Table	Require- ment	Comment
SUEWS_Veg.txt	MU	See section 2.2 Järvi et al. (2011); Appendix A of Järvi et al. [2014]. Example values: 5 for EveTr [Järvi et al., 2011]

BaseTe

Description Base temperature for initiating sensesance degree days (SDD) for leaf off. [°C] **Configuration**

Referencing Table	Require- ment	Comment
SUEWS_Veg.txt	MU	See section 2.2 Järvi et al. [2011]; Appendix A Järvi et al. [2014]. Example values: 10 EveTr Järvi et al. [2011]

BaseT_HC

Description Base temperature for heating degree days [°C]

Configuration

Referencing Table	Require-	Comment
	ment	
SUEWS_AnthropogenicEmission.txt	MU	Base temperature for heating degree days [°C] e.g. Sailor and Vasireddy [2006]

beta

 $\textbf{Description} \ \ \text{The light-saturated gross photosynthesis of the canopy. [umol \ m^{\text{-}2} \ s^{\text{-}1} \]}$

Configuration

Referencing Table	Require- ment	Comment
SUEWS_BiogenCO2.txt	MU O	Example values: EmissionsMethod = 11, 12, 13, 14, 15, 16: • 43.35 [Ruimy et al., 1995] • 35 [Schmid, 2000] • 16.3 [Flanagan et al., 2002] EmissionsMethod = 21, 22, 23, 24, 25, 26: 17.793 [Bellucco et al., 2017] EmissionsMethod = 31, 32, 33, 34, 35, 36: 8.474 [Bellucco et al., 2017]

theta

Description The convexity of the curve at light saturation.

Configuration

Referencing Table	Require-	Comment
	ment	
SUEWS_BiogenCO2.txt	MU O	Example value:
		EmissionsMethod = 21, 22, 23,
		24, 25, 26: 0.723 [Bellucco et
		al., 2017] EmissionsMethod
		= 31, 32, 33, 34, 35, 36: 0.96
		[Bellucco et al., 2017]

alpha_enh

Description Part of the *alpha* coefficient related to the fraction of vegetation.

Configuration

Referencing Table	Require- ment	Comment
SUEWS_BiogenCO2.txt	MU O	Example value: 0.016 [Bellucco et al., 2017]

beta_enh

Description Part of the *beta* coefficient related to the fraction of vegetation.

Configuration

Referencing Table	Require- ment	Comment
SUEWS_BiogenCO2.txt	MU O	Example values: 33.454 [Bel-
		lucco et al., 2017]

resp_a

Description Respiration coefficient a.

Configuration

Referencing Table	Require-	Comment
	ment	
SUEWS_BiogenCO2.txt	MU O	Example values:
		• 1.08 [Schmid, 2000]
		• 3.229 [Järvi <i>et al.</i> , 2012]

resp_b

Description Respiration coefficient b - related to air temperature dependency.

Configuration

Referencing Table	Require- ment	Comment
SUEWS_BiogenCO2.txt	MU O	Example values:

min_respi

 $\textbf{Description} \ \ \text{Minimum soil respiration rate (for cold-temperature limit) [umol \ m^{-2} \ s^{-1}]}.$

Configuration

Referencing Table	Require- ment	Comment
SUEWS_BiogenCO2.txt	MU O	Example values: 0.6 estimate from Hyytiälä forest site.

BiogenCO2Code

Description Code linking to the *Code* column in *SUEWS_BiogenCO2.txt*.

Configuration

Referencing Table	Require- ment	Comment
SUEWS_Veg.txt	L	Code linking to the <i>Code</i> column in <i>SUEWS_BiogenCO2.txt</i> .

QF0_BEU_WD

Description Building energy use [W m⁻²]

Configuration

Referencing Table	Require-	Comment
	ment	
SUEWS_SiteSelect.txt	0	Weekday building energy use [W
		m-2] Can be used for CO2 flux
		calculation.

QF0_BEU_WE

Description Building energy use [W m⁻²]

Configuration

Referencing Table	Require- ment	Comment
SUEWS_SiteSelect.txt	0	Can be used for CO2 flux calculation.

CO2PointSource

Description CO2 emission factor [kg km⁻¹]

Configuration

Referencing Table	Require-	Comment
	ment	
SUEWS_SiteSelect.txt	0	CO2 emission factor [kg km ⁻¹]

Code

Description Code linking to a corresponding look-up table.

Configuration

Referencing Table	Require- ment	Comment		
SUEWS_NonVeg.txt	L	Code linking to SUEWS_SiteSelect.txt for paved surfaces (Code_Paved), buildings (Code_Bldgs) and bare soil surfaces (Code_BSoil). Value of integer is arbitrary but must match codes specified in SUEWS_SiteSelect.txt.		
SUEWS_Veg.txt	L	Code linking to SUEWS_SiteSelect.txt for evergreen trees and shrubs (Code_EveTr), deciduous trees and shrubs (Code_DecTr) and grass surfaces (Code_Grass). Value of integer is arbitrary but must match codes specified in SUEWS_SiteSelect.txt.		

continues on next page

Table 7.41 – continued from previous page

Referencing Table	Require-	revious page Comment			
Treferencing rable	ment	Comment			
SUEWS_Water.txt	L	Code linking to SUEWS_SiteSelect.txt for water surfaces (Code_Water). Value of integer is arbitrary but must match code specified in SUEWS_SiteSelect.txt.			
SUEWS_Snow.txt	L	Code linking to SUEWS_SiteSelect.txt for snow surfaces (SnowCode). Value of integer is arbitrary but must match code specified in SUEWS_SiteSelect.txt.			
SUEWS_Soil.txt	L	Code linking to the SoilTypeCode column in SUEWS_NonVeg.txt (for Paved, Bldgs and BSoil surfaces) and SUEWS_Veg.txt (for EveTr, DecTr and Grass surfaces). Value of integer is arbitrary but must match code specified in SUEWS_SiteSelect.txt.			
SUEWS_Conductance.txt	L	Code linking to the CondCode column in <i>SUEWS_SiteSelect.txt</i> . Value of integer is arbitrary but must match code specified in <i>SUEWS_SiteSelect.txt</i> .			
SUEWS_AnthropogenicEmission.txt	L	Code linking to the AnthropogenicCode column in SUEWS_SiteSelect.txt . Value of integer is arbitrary but must match code specified in SUEWS_SiteSelect.txt.			
SUEWS_Irrigation.txt	L	Code linking to SUEWS_SiteSelect.txt for irrigation modelling (IrrigationCode). Value of integer is arbitrary but must match codes specified in SUEWS_SiteSelect.txt.			
SUEWS_OHMCoefficients.txt	L	Code linking to the OHMCode_SummerWet, OHMCode_SummerDry, OHMCode_WinterWet and OHMCode_WinterDry columns in SUEWS_NonVeg.txt, SUEWS_Veg.txt, SUEWS_Water.txt and SUEWS_Snow.txt files. Value of integer is arbitrary but must match code specified in SUEWS_SiteSelect.txt.			

continues on next page

Table 7.41 – continued from previous page

Referencing Table	Require-	Comment			
	ment				
SUEWS_ESTMCoefficients.txt	L	For buildings and paved surfaces,			
		set to zero if there is more than			
		one ESTM class per grid and the			
		codes and surface fractions speci-			
		fied in SUEWS_SiteSelect.txt will			
		be used instead.			
SUEWS_BiogenCO2.txt	L	Code linking to the			
		BiogenCO2Code column in			
		SUEWS_Veg.txt.			

Code_Bldgs

Description Code for *B1dgs* surface characteristics linking to *Code* of *SUEWS_NonVeg.txt* **Configuration**

Referencing Table	Require- ment	Comment
SUEWS_SiteSelect.txt	L	Code for Bldgs surface characteristics Provides the link to column 1 of <i>SUEWS_NonVeg.txt</i> , which contains the attributes describing buildings in this grid for this year. Value of integer is arbitrary but must match code specified in column 1 of <i>SUEWS_NonVeg.txt</i> .

Code_BSoil

Description Code for *BSoil* surface characteristics linking to *Code* of *SUEWS_NonVeg.txt* **Configuration**

Referencing Table	Require- ment	Comment
SUEWS_SiteSelect.txt	L	Value of integer is arbitrary but
		must match code specified in col-
		umn 1 of SUEWS_NonVeg.txt.

Code_DecTr

Description Code for *DecTr* surface characteristics linking to *Code* of *SUEWS_Veg.txt* **Configuration**

Referencing Table	Require-	Comment
	ment	
SUEWS_SiteSelect.txt	L	Code for DecTr surface character-
		istics Provides the link to column
		1 of SUEWS_Veg.txt, which con-
		tains the attributes describing de-
		ciduous trees and shrubs in this
		grid for this year. Value of in-
		teger is arbitrary but must match
		code specified in column 1 of
		SUEWS_Veg.txt.

Code_ESTMClass_Bldgs1

Description Code linking to SUEWS_ESTMCoefficients.txt

Configuration

Referencing Table	Require- ment	Comment		
SUEWS_SiteSelect.txt	L	Code SUEWS_ES	linking STMCoefficients	to to

Code_ESTMClass_Bldgs2

Description Code linking to SUEWS_ESTMCoefficients.txt

Configuration

Referencing Table	Require- ment	Comment		
SUEWS_SiteSelect.txt	L	Code SUEWS_ES	linking STMCoefficients	to s.txt

Code_ESTMClass_Bldgs3

Description Code linking to SUEWS_ESTMCoefficients.txt

Configuration

Referencing Table	Require-	Comment		
	ment			
SUEWS_SiteSelect.txt	L	Code	linking	to
		SUEWS_ES	STMCoefficients	s.txt

Code_ESTMClass_Bldgs4

Description Code linking to SUEWS_ESTMCoefficients.txt

Configuration

Referencing Table	Require- ment	Comment		
SUEWS_SiteSelect.txt	L	Code SUEWS_E	linking ESTMCoefficients	.txt

Code_ESTMClass_Bldgs5

Description Code linking to SUEWS_ESTMCoefficients.txt

Configuration

Referencing Table	Require- ment	Comme	nt	
SUEWS_SiteSelect.txt	L	Code SUEWS_	linking ESTMCoefficients.txt	to

Code_ESTMClass_Paved1

Description Code linking to SUEWS_ESTMCoefficients.txt

Configuration

Referencing Table	Require- ment	Comment		
SUEWS_SiteSelect.txt	L	Code SUEWS_ES	linking TMCoefficients.tx	to

Code_ESTMClass_Paved2

Description Code linking to SUEWS_ESTMCoefficients.txt

Configuration

Referencing Table	Require- ment	Comment		
SUEWS_SiteSelect.txt	L	Code SUEWS_ES	linking TMCoefficients	to s.txt

Code_ESTMClass_Paved3

Description Code linking to SUEWS_ESTMCoefficients.txt

Configuration

Referencing Table	Require- ment	Comment		
SUEWS_SiteSelect.txt	L	Code SUEWS_ES	linking TMCoefficients	to .txt

Code_EveTr

Description Code for *EveTr* surface characteristics linking to *Code* of *SUEWS_Veg.txt*

Configuration

Referencing Table	Require-	Comment
	ment	
SUEWS_SiteSelect.txt	L	Code for EveTr surface character-
		istics Provides the link to column
		1 of <i>SUEWS_Veg.txt</i> , which con-
		tains the attributes describing ev-
		ergreen trees and shrubs in this
		grid for this year. Value of in-
		teger is arbitrary but must match
		code specified in column 1 of
		SUEWS_Veg.txt.

Code_Grass

Description Code for *Grass* surface characteristics linking to *Code* of *SUEWS_Veg.txt* **Configuration**

Referencing Table	Require- ment	Comment
SUEWS_SiteSelect.txt	L	Code for Grass surface characteristics Provides the link to column 1 of <i>SUEWS_Veg.txt</i> , which contains the attributes describing grass surfaces in this grid for this year. Value of integer is arbitrary but must match code specified in column 1 of <i>SUEWS_Veg.txt</i> .

Code_Paved

Description Code for *Paved* surface characteristics linking to *Code* of *SUEWS_NonVeg.txt* **Configuration**

Referencing Table	Require- ment	Comment
SUEWS_SiteSelect.txt	L	Code for Paved surface characteristics Provides the link to column 1 of <i>SUEWS_NonVeg.txt</i> , which contains the attributes describing paved areas in this grid for this year. Value of integer is arbitrary but must match code specified in column 1 of <i>SUEWS_NonVeg.txt</i> . e.g. 331 means use the characteristics specified in the row of input file <i>SUEWS_NonVeg.txt</i> which
		has 331 in column 1 (Code).

Code_Water

Description Code for *Water* surface characteristics linking to *Code* of *SUEWS_Water.txt* **Configuration**

Referencing Table	Require- ment	Comment
SUEWS_SiteSelect.txt	L	Code for Water surface characteristics Provides the link to column 1 of <i>SUEWS_Water.txt</i> , which contains the attributes describing open water in this grid for this year. Value of integer is arbitrary but must match code specified in column 1 of <i>SUEWS_Water.txt</i> .

CondCode

Description Code for surface conductance parameters linking to *Code* of *SUEWS_Conductance.txt* **Configuration**

Referencing Table	Require- ment	Comment
SUEWS_SiteSelect.txt	L	Code for surface conductance parameters Provides the link to column 1 of SUEWS_Conductance.txt, which contains the parameters for the Jarvis [1976] parameterisation of surface conductance. Value of integer is arbitrary but must match code specified in column 1 of SUEWS_Conductance.txt. e.g. 33 means use the characteristics specified in the row of input file SUEWS_Conductance.txt which has 33 in column 1 (Code).

CRWMax

Description Maximum water holding capacity of snow [mm]

Configuration

Referencing Table	Require- ment	Comment
SUEWS_Snow.txt	MD	Maximum water holding capacity of snow [mm]

CRWMin

Description Minimum water holding capacity of snow [mm]

Configuration

Referencing Table	Require- ment	Comment
SUEWS_Snow.txt	MD	Minimum water holding capacity of snow [mm]

DayWat(1)

Description Irrigation allowed on Sundays [1], if not [0]

Configuration

Referencing Table	Require-	Comment
	ment	
SUEWS_Irrigation.txt	MU	Irrigation allowed on Sundays
		[1], if not [0]

DayWat(2)

Description Irrigation allowed on Mondays [1], if not [0]

Configuration

Referencing Table	Require- ment	Comment
SUEWS_Irrigation.txt	MU	Irrigation allowed on Mondays [1], if not [0]

DayWat(3)

Description Irrigation allowed on Tuesdays [1], if not [0]

Configuration

Referencing Table	Require- ment	Comment
SUEWS_Irrigation.txt	MU	Irrigation allowed on Tuesdays [1], if not [0]

DayWat(4)

Description Irrigation allowed on Wednesdays [1], if not [0]

Configuration

Referencing Table	Require- ment	Comment
SUEWS_Irrigation.txt	MU	Irrigation allowed on Wednes- days [1], if not [0]

DayWat(5)

Description Irrigation allowed on Thursdays [1], if not [0]

Referencing Table	Require- ment	Comment
SUEWS_Irrigation.txt	MU	Irrigation allowed on Thursdays [1], if not [0]

DayWat(6)

Description Irrigation allowed on Fridays [1], if not [0]

Configuration

Referencing Table	Require- ment	Comment
SUEWS_Irrigation.txt	MU	Irrigation allowed on Fridays [1], if not [0]

DayWat(7)

Description Irrigation allowed on Saturdays [1], if not [0]

Configuration

Referencing Table	Require-	Comment
	ment	
SUEWS_Irrigation.txt	MU	Irrigation allowed on Saturdays
		[1], if not [0]

DayWatPer(1)

Description Fraction of properties using irrigation on Sundays [0-1]

Configuration

Referencing Table	Require-	Comment
	ment	
SUEWS_Irrigation.txt	MU	Fraction of properties using irri-
		gation on Sundays [0-1]

DayWatPer(2)

Description Fraction of properties using irrigation on Mondays [0-1]

Configuration

Referencing Table	Require- ment	Comment
SUEWS_Irrigation.txt	MU	Fraction of properties using irri-
		gation on Mondays [0-1]

DayWatPer(3)

Description Fraction of properties using irrigation on Tuesdays [0-1]

Referencing Table	Require- ment	Comment
SUEWS_Irrigation.txt	MU	Fraction of properties using irrigation on Tuesdays [0-1]

DayWatPer(4)

Description Fraction of properties using irrigation on Wednesdays [0-1]

Configuration

Referencing Table	Require- ment	Comment
SUEWS_Irrigation.txt	MU	Fraction of properties using irrigation on Wednesdays [0-1]

DayWatPer(5)

Description Fraction of properties using irrigation on Thursdays [0-1]

Configuration

Referencing Table	Require-	Comment
	ment	
SUEWS_Irrigation.txt	MU	Fraction of properties using irri-
		gation on Thursdays [0-1]

DayWatPer(6)

Description Fraction of properties using irrigation on Fridays [0-1]

Configuration

Referencing Table	Require-	Comment
	ment	
SUEWS_Irrigation.txt	MU	Fraction of properties using irri-
		gation on Fridays [0-1]

DayWatPer(7)

Description Fraction of properties using irrigation on Saturdays [0-1]

Configuration

Referencing Table	Require- ment	Comment
SUEWS_Irrigation.txt	MU	Fraction of properties using irrigation on Saturdays [0-1]

DrainageCoef1

Description Coefficient D0 [mm h⁻¹] used in *DrainageEq*

Referencing Table	Require- ment	Comment
SUEWS_NonVeg.txt	MD	 Example values: DrainageEq = 3, 10 for Paved and Bldgs; DrainageEq = 2, 0.013 for BSoil
SUEWS_Veg.txt	MD	 Example values: DrainageEq = 3, 10 for Grass (irrigated); DrainageEq = 2, 0.013 for EveTr, DecTr, Grass (unirrigated)
SUEWS_Water.txt	MD	Not currently used for water surface

DrainageCoef2

Description Coefficient b [-] used in *DrainageEq*

Configuration

Referencing Table	Require- ment	Comment
SUEWS_NonVeg.txt	MD	 Example values: DrainageEq = 3, 3 for Paved and Bldgs DrainageEq = 2, 1.71 for BSoil
SUEWS_Veg.txt	MD	 Example values: DrainageEq = 3, 3 for Grass (irrigated) DrainageEq = 2, 1.71 for EveTr, DecTr, Grass (unirrigated)
SUEWS_Water.txt	MD	Not currently used for water surface

DrainageEq

Description Calculation choice for Drainage equation

Configuration

Referencing Table	Require- ment	Comment
SUEWS_NonVeg.txt	MD	 Options: 1: Falk and Niemczynowicz [1978] 2: Halldin et al. [1979] (Rutter eqn corrected for c=0, see Calder and Wright [1986]) 3: for BSoil [Falk and Niemczynowicz, 1978]; for Paved and Bldgs Coefficients are specified in the following two columns. Recommended in this version.
SUEWS_Veg.txt	MD	 Options: 1: Falk and Niemczynowicz [1978] 2: Halldin et al. [1979] (Rutter eqn corrected for c=0, see Calder & Wright (1986) [Calder and Wright, 1986]) 3: for EveTr, DecTr, Grass (unirrigated) see Falk and Niemczynowicz [1978]. Coefficients are specified in the following two columns. Recommended in this version.
SUEWS_Water.txt	MD	Not currently used for water surface.

EF_umolCO2perJ

Description Emission factor for fuels used for building heating.

Referencing Table	Require-	Comment
	ment	
SUEWS_SiteSelect.txt	0	Weekday building energy use [W
		m-2] Can be used for CO2 flux
		calculation.

Emissivity

Description Effective surface emissivity.

Configuration

Referencing Table	Require- ment	Comment
SUEWS_NonVeg.txt	MU	Effective surface emissivity. View factors should be taken into account.
SUEWS_Veg.txt	MU	Example values [-] • 0.98 EveTr [Oke, 2002] • 0.98 DecTr [Oke, 2002] • 0.93 Grass [Oke, 2002]
SUEWS_Water.txt	MU	Example values [-] • 0.95 Water [Oke, 2002]
SUEWS_Snow.txt	MU	Example values [-] • 0.99 [Järvi et al., 2014]

EndDLS

Description End of the day light savings [DOY]

Configuration

Referencing Table	Require- ment	Comment
SUEWS_SiteSelect.txt	MU	End of the day light savings [DOY] See Day Light Savings (DLS).

$EnEF_v_Jkm$

Description Emission factor for heat [J k m^{-1}].

Configuration

Referencing Table	Require-	Comment
	ment	
SUEWS_AnthropogenicEmission.txt	0	Emission factor for heat [J k m ⁻¹].
		Example values: 3.97e6 Sailor
		and Lu (2004) [Sailor and Lu,
		2004]

EnergyUseProfWD

Description Code linking to *EnergyUseProfWD* in *SUEWS_Profiles.txt*.

Configuration

Referencing Table	Require- ment	Comment
SUEWS_AnthropogenicEmission.txt	L	Code for energy use profile (weekdays) Provides the link to column 1 of <i>SUEWS_Profiles.txt</i> . Look the codes Value of integer is arbitrary but must match code specified in column 1 of <i>SUEWS_Profiles.txt</i> .

EnergyUseProfWE

Description Code linking to *EnergyUseProfWE* in *SUEWS_Profiles.txt*.

Configuration

Referencing Table	Require-	Comment
	ment	
SUEWS_AnthropogenicEmission.txt	L	Code for energy use profile
		(weekends) Provides the link to
		column 1 of SUEWS_Profiles.txt.
		Value of integer is arbitrary but
		must match code specified in
		column 1 of SUEWS_Profiles.txt.

ESTMCode

Description Code for ESTM coefficients linking to *SUEWS_ESTMCoefficients.txt* **Configuration**

Referencing Table	Require- ment	Comment
SUEWS_NonVeg.txt	L	For paved and building surfaces, it is possible to specify multiple codes per grid (3 for paved, 5 for buildings) using <i>SUEWS_SiteSelect.txt</i> . In this case, set ESTMCode here to zero.

continues on next page

Table 7.83 – continued from previous page

Referencing Table	Require-	Comment
	ment	
SUEWS_Veg.txt	L	Code for ESTM coefficients to
		use for this surface. Links to
		SUEWS_ESTMCoefficients.txt
		. Value of integer is arbi-
		trary but must match code
		specified in column 1 of
		SUEWS_ESTMCoefficients.txt.
SUEWS_Water.txt	L	Code for ESTM coefficients to
		use for this surface. Links to
		SUEWS_ESTMCoefficients.txt
		. Value of integer is arbi-
		trary but must match code
		specified in column 1 of
		SUEWS_ESTMCoefficients.txt.
SUEWS_Snow.txt	L	For paved and building sur-
		faces, it is possible to specify
		multiple codes per grid (3 for
		paved, 5 for buildings) using
		SUEWS_SiteSelect.txt . In this
		case, set ESTM code here to
		zero.

FAI_Bldgs

Description Frontal area index for buildings [-]

Configuration

Referencing Table	Require- ment	Comment
SUEWS_SiteSelect.txt	0	Frontal area index for buildings [-] Required if RoughLenMomMethod = 3 in RunControl.nml.

FAI_DecTr

Description Frontal area index for deciduous trees [-]

Configuration

Referencing Table	Require-	Comment
	ment	
SUEWS_SiteSelect.txt	0	Frontal area index for de-
		ciduous trees [-] Required if
		RoughLenMomMethod = 3 in
		RunControl.nml.

FAI_EveTr

Description Frontal area index for evergreen trees [-]

Referencing Table	Require-	Comment
	ment	
SUEWS_SiteSelect.txt	0	Frontal area index for ever-
		green trees [-] Required if
		RoughLenMomMethod = 3 in
		RunControl.nml.

Faut

Description Fraction of irrigated area that is irrigated using automated systems

Configuration

Referencing Table	Require-	Comment
	ment	
SUEWS_Irrigation.txt	MU	Fraction of irrigated area that
		is irrigated using automated sys-
		tems (e.g. sprinklers).

FcEF_v_kgkmWD

Description CO2 emission factor for weekdays [kg km⁻¹]

Configuration

Referencing Table	Require- ment	Comment
SUEWS_AnthropogenicEmission.txt	0	CO2 emission factor for week- days [kg km ⁻¹] Can be used for
		CO2 flux calculation.

FcEF_v_kgkmWE

Description CO2 emission factor for weekends [kg km⁻¹]

Configuration

Referencing Table	Require-	Comment
	ment	
SUEWS_AnthropogenicEmission.txt	0	CO2 emission factor for week-
		days [kg km ⁻¹] Can be used for
		CO2 flux calculation.

FcEF_v_Jkm

Description Traffic emission factor for CO2.

Referencing Table	Require-	Comment
	ment	
SUEWS_SiteSelect.txt	0	Weekday building energy use [W
		m-2] Can be used for CO2 flux
		calculation.

fcld

Description Cloud fraction [tenths]

Configuration

Referencing Table	Require-	Comment
	ment	
SSss_YYYY_data_tt.txt	0	Cloud fraction [tenths]

FlowChange

Description Difference in input and output flows for water surface [mm h⁻¹]

Configuration

Referencing Table	Require-	Comment
	ment	
SUEWS_SiteSelect.txt	MD	Difference in input and output
		flows for water surface [mm h ⁻¹]
		Used to indicate river or stream
		flow through the grid. Currently
		not fully tested!

Fraction1of8

Description Fraction of water that can flow to *GridConnection1of8* [-]

Configuration

Referencing Table	Require- ment	Comment
SUEWS_SiteSelect.txt	MD MU	Fraction of water that can flow to
		the grid specified in previous col-
		umn [-]

Fraction2of8

Description Fraction of water that can flow to *GridConnection2of8* [-]

Configuration

Referencing Table	Require-	Comment
	ment	
SUEWS_SiteSelect.txt	MD MU	Fraction of water that can flow to
		the grid specified in previous col-
		umn [-]

Fraction3of8

Description Fraction of water that can flow to *GridConnection3of8* [-]

Configuration

Referencing Table	Require-	Comment
	ment	
SUEWS_SiteSelect.txt	MD MU	Fraction of water that can flow to
		the grid specified in previous col-
		umn [-]

Fraction4of8

Description Fraction of water that can flow to *GridConnection4of8* [-]

Configuration

Referencing Table	Require-	Comment
	ment	
SUEWS_SiteSelect.txt	MD MU	Fraction of water that can flow to
		the grid specified in previous col-
		umn [-]

Fraction5of8

Description Fraction of water that can flow to *GridConnection5of8* [-]

Configuration

Referencing Table	Require-	Comment
	ment	
SUEWS_SiteSelect.txt	MD MU	Fraction of water that can flow to
		the grid specified in previous col-
		umn [-]

Fraction6of8

Description Fraction of water that can flow to GridConnection6of8 [-]

Configuration

Referencing Table	Require-	Comment
	ment	
SUEWS_SiteSelect.txt	MD MU	Fraction of water that can flow to
		the grid specified in previous col-
		umn [-]

Fraction7of8

Description Fraction of water that can flow to *GridConnection7of8* [-]

Referencing Table	Require-	Comment
	ment	
SUEWS_SiteSelect.txt	MD MU	Fraction of water that can flow to
		the grid specified in previous col-
		umn [-]

Fraction8of8

Description Fraction of water that can flow to *GridConnection8of8* [-]

Configuration

Referencing Table	Require-	Comment
	ment	
SUEWS_SiteSelect.txt	MD MU	Fraction of water that can flow to
		the grid specified in previous col-
		umn [-]

Fr_Bldgs

Description Surface cover fraction of buildings [-]

Configuration

Referencing Table	Require- ment	Comment
SUEWS_SiteSelect.txt	MU	Surface cover fraction of build-
		ings [-]

Fr_Bsoil

Description Surface cover fraction of bare soil or unmanaged land [-]

Configuration

Referencing Table	Require- ment	Comment
SUEWS_SiteSelect.txt	MU	Surface cover fraction of bare soil or unmanaged land [-]

Fr_DecTr

Description Surface cover fraction of deciduous trees and shrubs [-]

Configuration

	Referencing Table	Require- ment	Comment
Γ	SUEWS_SiteSelect.txt	MU	Surface cover fraction of decidu-
			ous trees and shrubs [-]

${\tt Fr_ESTMClass_Bldgs1}$

Description Surface cover fraction of building class 1 used in ESTM calculations

Referencing Table	Require-	Comment
	ment	
SUEWS_SiteSelect.txt	MU	Columns 94-98 must add up to 1

Fr_ESTMClass_Bldgs2

Description Surface cover fraction of building class 2 used in ESTM calculations **Configuration**

Referencing Table	Require- ment	Comment
SUEWS_SiteSelect.txt	MU	Columns 94-98 must add up to 1

Fr_ESTMClass_Bldgs3

Description Surface cover fraction of building class 3 used in ESTM calculations

Configuration

Referencing Table	Require- ment	Comment
SUEWS_SiteSelect.txt	MU	Columns 94-98 must add up to 1

Fr_ESTMClass_Bldgs4

Description Surface cover fraction of building class 4 used in ESTM calculations **Configuration**

Referencing Table	Require- ment	Comment
SUEWS_SiteSelect.txt	MU	Columns 94-98 must add up to 1

Fr_ESTMClass_Bldgs5

Description Surface cover fraction of building class 5 used in ESTM calculations **Configuration**

Referencing Table	Require- ment	Comment
SUEWS_SiteSelect.txt	MU	Columns 94-98 must add up to 1

Fr_ESTMClass_Paved1

Description Surface cover fraction of *Paved* surface class 1 used in ESTM calculations **Configuration**

Referencing Table	Require- ment	Comment
SUEWS_SiteSelect.txt	MU	Columns 88-90 must add up to 1

Fr_ESTMClass_Paved2

Description Surface cover fraction of *Paved* surface class 2 used in ESTM calculations

Configuration

Referencing Table	Require-	Comment
	ment	
SUEWS_SiteSelect.txt	MU	Columns 88-90 must add up to 1

Fr_ESTMClass_Paved3

Description Surface cover fraction of *Paved* surface class 3 used in ESTM calculations

Configuration

Referencing Table	Require- ment	Comment
SUEWS_SiteSelect.txt	MU	Columns 88-90 must add up to 1

Fr_EveTr

Description Surface cover fraction of *EveTr*: evergreen trees and shrubs [-]

Configuration

Referencing Table	Require- ment	Comment
SUEWS_SiteSelect.txt	MU	Surface cover fraction of ever- green trees and shrubs [-]

Fr_Grass

Description Surface cover fraction of *Grass* [-]

Configuration

Referencing Table	Require- ment	Comment
SUEWS_SiteSelect.txt	MU	Surface cover fraction of grass [-]

Fr_Paved

Description Surface cover fraction of *Paved* surfaces [-]

Configuration

Referencing Table	Require- ment	Comment
SUEWS_SiteSelect.txt	MU	Columns 14 to 20 must sum to 1.

Fr_Water

Description Surface cover fraction of open water [-]

Configuration

Referencing Table	Require-	Comment
	ment	
SUEWS_SiteSelect.txt	MU	Surface cover fraction of open
		water [-] (e.g. river, lakes, ponds,
		swimming pools)

FrFossilFuel_Heat

Description Fraction of fossil fuels used for building heating [-]

Configuration

Referencing Table	Require-	Comment
	ment	
SUEWS_SiteSelect.txt	0	Weekday building energy use [W m-2] Can be used for CO2 flux calculation.

FrFossilFuel_NonHeat

Description Fraction of fossil fuels used for building energy use [-]

Configuration

Referencing Table	Require- ment	Comment
SUEWS_SiteSelect.txt	0	Weekday building energy use [W
		m-2] Can be used for CO2 flux
		calculation.

FrPDDwe

Description Fraction of weekend population to weekday population. [-]

Configuration

Referencing Table	Require-	Comment
	ment	
SUEWS_AnthropogenicEmission.txt	MU O	Fraction of weekend population
		to weekday population. [-]

G1

Description Related to maximum surface conductance [mm s⁻¹]

Referencing Table	Require- ment	Comment
SUEWS_Conductance.txt	MD	Related to maximum surface conductance [mm s ⁻¹]

G2

Description Related to Kdown dependence [W m⁻²]

Configuration

Referencing Table	Require- ment	Comment
SUEWS_Conductance.txt	MD	Related to Kdown dependence [W m ⁻²]

G3

Description Related to VPD dependence [units depend on *gsModel*]

Configuration

Referencing Table	Require- ment	Comment
SUEWS_Conductance.txt	MD	Related to VPD dependence [units depend on gsChoice in RunControl.nml]

G4

Description Related to VPD dependence [units depend on *gsModel*]

Configuration

Referencing Table	Require-	Comment
	ment	
SUEWS_Conductance.txt	MD	Related to VPD dependence
		[units depend on gsChoice in
		RunControl.nml]

G5

Description Related to temperature dependence [°C]

Configuration

Referencing Table	Require- ment	Comment
SUEWS_Conductance.txt	MD	Related to temperature dependence [°C]

G6

Description Related to soil moisture dependence [mm⁻¹]

Configuration

Referencing Table	Require- ment	Comment
SUEWS_Conductance.txt	MD	Related to soil moisture dependence [mm ⁻¹]

$gamq_gkgm$

Description vertical gradient of specific humidity [g kg⁻¹ m⁻¹]

Configuration

Referencing Table	Require- ment	Comment
CBL_initial_data.txt	MU	vertical gradient of specific humidity (g kg ⁻¹ m ⁻¹)

gamt_Km

Description vertical gradient of potential temperature [K m⁻¹]

Configuration

Referencing Table	Require- ment	Comment
CBL_initial_data.txt	MU	vertical gradient of potential temperature (K m ⁻¹) strength of the inversion

GDDFull

Description The growing degree days (GDD) needed for full capacity of the leaf area index (LAI) $[^{\circ}C]$.

Referencing Table	Require-	Comment
	ment	
SUEWS_Veg.txt	MU	This should be checked carefully
		for your study area using mod-
		elled LAI from the DailyState
		output file compared to known
		behaviour in the study area. See
		section 2.2 Järvi et al. [2011];
		Appendix A Järvi et al. [2014]
		for more details. Example values:
		300 for <i>EveTr</i> Järvi <i>et al.</i> [2011]

Grid

Description a unique number to represent grid

Configuration

Referencing Table	Require- ment	Comment
SUEWS_SiteSelect.txt	MU	Grid numbers do not need to be consecutive and do not need to start at a particular value. Each grid must have a unique grid number. All grids must be present for all years. These grid numbers are referred to in Grid-Connections (columns 64-79) (N.B. Not available in this version.)

GridConnection1of8

Description Number of the 1st grid where water can flow to The next 8 pairs of columns specify the water flow between grids. The first column of each pair specifies the grid that the water flows to (from the current grid, column 1); the second column of each pair specifies the fraction of water that flow to that grid. The fraction (i.e. amount) of water transferred may be estimated based on elevation, the length of connecting surface between grids, presence of walls, etc. Water cannot flow from the current grid to the same grid, so the grid number here must be different to the grid number in column 1. Water can flow to a maximum of 8 other grids. If there is no water flow between grids, or a single grid is run, set to 0. See section on Grid Connections

Configuration

Referencing Table	Require-	Comment
	ment	
SUEWS_SiteSelect.txt	MD MU	The next 8 pairs of columns spec-
		ify the water flow between grids.
		The first column of each pair
		specifies the grid that the water
		flows to (from the current grid,
		column 1); the second column
		of each pair specifies the frac-
		tion of water that flow to that
		grid. The fraction (i.e. amount)
		of water transferred may be es-
		timated based on elevation, the
		length of connecting surface be-
		tween grids, presence of walls,
		etc. Water cannot flow from the
		current grid to the same grid, so
		the grid number here must be dif-
		ferent to the grid number in col-
		umn 1. Water can flow to a max-
		imum of 8 other grids. If there is
		no water flow between grids, or a
		single grid is run, set to 0. See
		section on Grid Connections

GridConnection2of8

Description Number of the 2nd grid where water can flow to

Configuration

Referencing Table	Require- ment	Comment
SUEWS_SiteSelect.txt	MD MU	Number of the grid where water
		can flow to

GridConnection3of8

Description Number of the 3rd grid where water can flow to

Configuration

Referencing Table	Require- ment	Comment
SUEWS_SiteSelect.txt	MD MU	Number of the grid where water can flow to

GridConnection4of8

Description Number of the 4th grid where water can flow to

Referencing Table	Require- ment	Comment
SUEWS_SiteSelect.txt	MD MU	Number of the grid where water can flow to

GridConnection5of8

Description Number of the 5th grid where water can flow to

Configuration

Referencing Table	Require-	Comment
	ment	
SUEWS_SiteSelect.txt	MD MU	Number of the grid where water
		can flow to

GridConnection6of8

Description Number of the 6th grid where water can flow to

Configuration

Referencing Table	Require- ment	Comment
SUEWS_SiteSelect.txt	MD MU	Number of the grid where water can flow to

GridConnection7of8

Description Number of the 7th grid where water can flow to

Configuration

Referencing Table	Require- ment	Comment
SUEWS_SiteSelect.txt	MD MU	Number of the grid where water can flow to

GridConnection8of8

Description Number of the 8th grid where water can flow to

Configuration

Referencing Table	Require- ment	Comment
SUEWS_SiteSelect.txt	MD MU	Number of the grid where water can flow to

gsModel

Description Formulation choice for conductance calculation.

Referencing Table	Require- ment	Comment
SUEWS_Conductance.txt	MD	 1 [Järvi et al., 2011] 2 [Ward et al., 2016] Recommended in this version.

H_Bldgs

Description Mean building height [m]

Configuration

Referencing Table	Require- ment	Comment
SUEWS_SiteSelect.txt	MU	Mean building height [m]

H_DecTr

Description Mean height of deciduous trees [m]

Configuration

Referencing Table	Require- ment	Comment
SUEWS_SiteSelect.txt	MU	Mean height of deciduous trees [m]

H_EveTr

Description Mean height of evergreen trees [m]

Configuration

Referencing Table	Require- ment	Comment
SUEWS_SiteSelect.txt	MU	Mean height of evergreen trees [m]

H_maintain

Description water depth to maintain used in automatic irrigation (e.g., ponding water due to flooding irrigation in rice crop-field) [mm].

Note:

1. *H_maintain* can be positive (e.g., ponding water due to flooding irrigation in rice crop-field) or negative (e.g., soil water store level to maintain: *SoilStoreCap* + *H_maintain*) or zero (e.g., to maintain a maximum soil store level, i.e., *SoilStoreCap*).

2. Disable this feature by setting this parameter to -999: then no restrictions will be applied to maintain available water level.

Configuration

Referencing Table	Require- ment	Comment
SUEWS_Irrigation.txt	MU	water depth to maintain used in automatic irrigation.

id

Description Day of year [DOY]

Configuration

Referencing Table	Require-	Comment
	ment	
SUEWS_SiteSelect.txt	MD	Not used: set to 1 in this version.
SSss_YYYY_ESTM_Ts_data_tt.txt	MU	Day of year [DOY]
SSss_YYYY_data_tt.txt	MU	Day of year [DOY]
CBL_initial_data.txt	MU	Day of year [DOY]

Ie_a1

Description Coefficient for automatic irrigation model [mm d⁻¹]

Configuration

Referencing Table	Require- ment	Comment
SUEWS_Irrigation.txt	MD	Coefficient for automatic irrigation model [mm d -1]

Ie_a2

Description Coefficient for automatic irrigation model [mm d⁻¹ K⁻¹]

Configuration

Referencing Table	Require- ment	Comment
SUEWS_Irrigation.txt	MD	Coefficient for automatic irrigation model [mm d -1 K ⁻¹]

Ie_a3

Description Coefficient for automatic irrigation model [mm d⁻²]

Configuration

Referencing Table	Require- ment	Comment
SUEWS_Irrigation.txt	MD	Coefficient for automatic irriga-
		tion model [mm d -2]

Ie_end

Description Day when irrigation ends [DOY]

Configuration

Referencing Table	Require-	Comment
	ment	
SUEWS_Irrigation.txt	MU	Day when irrigation ends [DOY]

Ie_m1

Description Coefficient for manual irrigation model [mm d⁻¹]

Configuration

Referencing Table	Require- ment	Comment
SUEWS_Irrigation.txt	MD	Coefficient for manual irrigation model [mm d -1]

Ie_m2

Description Coefficient for manual irrigation model [mm d⁻¹ K⁻¹]

Configuration

Referencing Table	Require- ment	Comment
SUEWS_Irrigation.txt	MD	Coefficient for manual irrigation model [mm d -1 K ⁻¹]

Ie_m3

Description Coefficient for manual irrigation model [mm d⁻²]

Configuration

Referencing Table	Require- ment	Comment
SUEWS_Irrigation.txt	MD	Coefficient for manual irrigation model [mm d -2]
		moder [mm u -2]

Ie_start

Description Day when irrigation starts [DOY]

Referencing Table	Require- ment	Comment
SUEWS_Irrigation.txt	MU	Day when irrigation starts [DOY]

ih

Description Hour [H]

Configuration

Referencing Table	Require- ment	Comment
SUEWS_SiteSelect.txt	MD	Hour [H] Not used: set to 0 in this
		version.

imin

Description Minute [M]

Configuration

Referencing Table	Require-	Comment
	ment	
SUEWS_SiteSelect.txt	MD	Minute [M] Not used: set to 0 in
		this version.
SSss_YYYY_ESTM_Ts_data_tt.txt	MU	Minute [M]
SSss_YYYY_data_tt.txt	MU	Minute [M]

InfiltrationRate

Description Infiltration rate.

Configuration

Referencing Table	Require-	Comment
	ment	
SUEWS_Soil.txt	0	Not currently used

Internal_albedo

Description Albedo of all internal elements for building surfaces only

Configuration

Referencing Table	Require- ment	Comment
SUEWS_ESTMCoefficients.txt	MU	Albedo of all internal elements
		for building surfaces only

Internal_CHbld

Description Bulk transfer coefficient of internal building elements [W m⁻² K⁻¹]

Referencing Table	Require-	Comment
	ment	
SUEWS_ESTMCoefficients.txt	0	Bulk transfer coefficient of in-
		ternal building elements [W m ⁻²
		K ⁻¹] (for building surfaces only
		and if $Ib1dCHmod == 0$ in EST -
		Minput.nml

Internal_CHroof

Description Bulk transfer coefficient of internal roof [W m⁻² K⁻¹]

Configuration

Referencing Table	Require-	Comment
	ment	
SUEWS_ESTMCoefficients.txt	0	Bulk transfer coefficient of inter-
		nal roof [W m ⁻² K ⁻¹] (for building
		surfaces only and if IbldCHmod
		== 0 in ESTMinput.nml

Internal_CHwall

Description Bulk transfer coefficient of internal wall [W m^{-2} K^{-1}]

Configuration

Referencing Table	Require-	Comment
	ment	
SUEWS_ESTMCoefficients.txt	0	Bulk transfer coefficient of inter-
		nal wall [W m ⁻² K ⁻¹] (for building
		surfaces only and if IbldCHmod
		== 0 in ESTMinput.nml

Internal_emissivity

Description Emissivity of all internal elements for building surfaces only

Configuration

Referencing Table	Require-	Comment
	ment	
SUEWS_ESTMCoefficients.txt	MU	Emissivity of all internal ele-
		ments for building surfaces only

Internal_k1

Description Thermal conductivity of the first layer [W $m^{-1} K^{-1}$]

Referencing Table	Require- ment	Comment
SUEWS_ESTMCoefficients.txt	MU	Thermal conductivity of the first layer [W m ⁻¹ K ⁻¹]

Internal_k2

Description Thermal conductivity of the second layer [W m⁻¹ K⁻¹]

Configuration

Referencing Table	Require-	Comment
	ment	
SUEWS_ESTMCoefficients.txt	0	Thermal conductivity of the sec-
		ond layer [W m ⁻¹ K ⁻¹]

Internal_k3

Description Thermal conductivity of the third layer [W m⁻¹ K⁻¹]

Configuration

Referencing Table	Require- ment	Comment
SUEWS_ESTMCoefficients.txt	0	Thermal conductivity of the third layer [W m ⁻¹ K ⁻¹]

Internal_k4

Description Thermal conductivity of the fourth layer [W m⁻¹ K⁻¹]

Configuration

Referencing Table	Require- ment	Comment
SUEWS_ESTMCoefficients.txt	0	Thermal conductivity of the fourth layer [W m ⁻¹ K ⁻¹]

Internal_k5

Description Thermal conductivity of the fifth layer [W m⁻¹ K⁻¹]

Configuration

Referencing Table	Require- ment	Comment
SUEWS_ESTMCoefficients.txt	0	Thermal conductivity of the fifth layer [W m ⁻¹ K ⁻¹]

Internal_rhoCp1

Description Volumetric heat capacity of the first layer[J m⁻³ K⁻¹]

Referencing Table	Require- ment	Comment
SUEWS_ESTMCoefficients.txt	MU	Volumetric heat capacity of the first layer[J m ⁻³ K ⁻¹]

Internal_rhoCp2

Description Volumetric heat capacity of the second layer [J $m^{-3} K^{-1}$]

Configuration

Referencing Table	Require- ment	Comment
SUEWS_ESTMCoefficients.txt	0	Volumetric heat capacity of the second layer [J m ⁻³ K ⁻¹]

Internal_rhoCp3

Description Volumetric heat capacity of the third layer[J m⁻³ K⁻¹]

Configuration

Referencing Table	Require- ment	Comment
SUEWS_ESTMCoefficients.txt	0	Volumetric heat capacity of the third layer[J m ⁻³ K ⁻¹]

Internal_rhoCp4

Description Volumetric heat capacity of the fourth layer [J m⁻³ K⁻¹]

Configuration

Referencing Table	Require-	Comment
	ment	
SUEWS_ESTMCoefficients.txt	0	Volumetric heat capacity of the
		fourth layer [J m ⁻³ K ⁻¹]

Internal_rhoCp5

Description Volumetric heat capacity of the fifth layer [J m⁻³ K⁻¹]

Configuration

Referencing Table	Require- ment	Comment
SUEWS_ESTMCoefficients.txt	0	Volumetric heat capacity of the fifth layer [J m ⁻³ K ⁻¹]

Internal_thick1

Description Thickness of the first layer [m] for building surfaces only

Referencing Table	Require- ment	Comment
SUEWS_ESTMCoefficients.txt	MU	Thickness of the first layer [m] for building surfaces only; set to -999 for all other surfaces

Internal_thick2

Description Thickness of the second layer [m]

Configuration

Referencing Table	Require- ment	Comment
SUEWS_ESTMCoefficients.txt	0	Thickness of the second layer [m]
		(if no second layer, set to -999.)

Internal_thick3

Description Thickness of the third layer [m]

Configuration

Referencing Table	Require- ment	Comment
SUEWS_ESTMCoefficients.txt	0	Thickness of the third layer [m] (if no third layer, set to -999.)

Internal_thick4

Description Thickness of the fourth layer [m]

Configuration

Referencing Table	Require- ment	Comment
SUEWS_ESTMCoefficients.txt	0	Thickness of the fourth layer [m]
		(if no fourth layer, set to -999.)

Internal_thick5

Description Thickness of the fifth layer [m]

Configuration

Referencing Table	Require- ment	Comment
SUEWS_ESTMCoefficients.txt	0	Thickness of the fifth layer [m] (if no fifth layer, set to -999.)

InternalWaterUse

Description Internal water use [mm h⁻¹]

Configuration

Referencing Table	Require- ment	Comment
SUEWS_Irrigation.txt	MU	Internal water use [mm h ⁻¹]

IrrFr_Paved

Description Fraction of *Paved* that is irrigated [-]

Configuration

Referencing Table	Require-	Comment
	ment	
SUEWS_SiteSelect.txt	MU	Fraction of paved surfaces that
		are irrigated [-]

IrrFr_Bldgs

Description Fraction of *Bldgs* that is irrigated [-]

Configuration

Referencing Table	Require-	Comment
	ment	
SUEWS_SiteSelect.txt	MU	Fraction of rooftop of buildings (e.g., green roofs) that are irrigated [-]

IrrFr_DecTr

Description Fraction of *DecTr* that is irrigated [-]

Configuration

Referencing Table	Require- ment	Comment
SUEWS_SiteSelect.txt	MU	Fraction of deciduous trees that
		are irrigated [-]

IrrFr_EveTr

Description Fraction of *EveTr* that is irrigated [-]

Referencing Table	Require-	Comment
	ment	
SUEWS_SiteSelect.txt	MU	Fraction of evergreen trees that are irrigated [-] e.g. 50% of the evergreen trees/shrubs are ir-
		rigated

IrrFr_Grass

Description Fraction of *Grass* that is irrigated [-]

Configuration

Referencing Table	Require- ment	Comment
SUEWS_SiteSelect.txt	MU	Fraction of grass that is irrigated
		[-]

IrrFr_BSoil

Description Fraction of *BSoil* that is irrigated [-]

Configuration

Referencing Table	Require- ment	Comment
SUEWS_SiteSelect.txt	MU	Fraction of bare soil that are irrigated [-]

IrrFr_Water

Description Fraction of *Water* that is irrigated [-]

Configuration

Referencing Table	Require- ment	Comment
SUEWS_SiteSelect.txt	MU	Fraction of water that are irri-
		gated [-]

${\bf Irrigation Code}$

 $\textbf{Description} \ \ \text{Code for modelling irrigation linking to } \textit{Code} \ \text{of } \textit{SUEWS_Irrigation.txt}$

Configuration

Referencing Table	Require- ment	Comment
SUEWS_SiteSelect.txt	L	Code for modelling irrigation Provides the link to column 1 of SUEWS_Irrigation.txt, which contains the model coefficients for estimation of the water use (used if WU_Choice = 0 in Run-Control.nml). Value of integer is arbitrary but must match code specified in column 1 of SUEWS_Irrigation.txt.

it

Description Hour [H]

Configuration

Referencing Table	Require- ment	Comment
SSss_YYYY_ESTM_Ts_data_tt.txt	MU	Hour [H]
SSss_YYYY_data_tt.txt	MU	Hour [H]

iу

Description Year [YYYY]

Configuration

Referencing Table	Require-	Comment
	ment	
SSss_YYYY_ESTM_Ts_data_tt.txt	MU	Year [YYYY]
SSss_YYYY_data_tt.txt	MU	Year [YYYY]

kdiff

Description Diffuse radiation [W m⁻²].

Configuration

Referencing Table	Require-	Comment
	ment	
SSss_YYYY_data_tt.txt	0	Recommended if SOLWEIGUse
		= 1

kdir

Description Direct radiation [W m⁻²].

Referencing Table	Require- ment	Comment
SSss_YYYY_data_tt.txt	0	Recommended if SOLWEIGUse = 1

kdown

Description Incoming shortwave radiation [W m⁻²].

Configuration

Referencin	g Table	Require-	Comment
		ment	
SSss_YYYYY_	data_tt.txt	MU	Must be $> 0 \text{ W m}^{-2}$.

Kmax

Description Maximum incoming shortwave radiation [W m⁻²]

Configuration

Referencing Table	Require- ment	Comment
SUEWS_Conductance.txt	MD	Maximum incoming shortwave radiation [W m ⁻²]

lai

Description Observed leaf area index [m⁻² m⁻²]

Configuration

Referencing Table	Require- ment	Comment
SSss_YYYY_data_tt.txt	0	Observed leaf area index [m ⁻² m ⁻²]

LAIEq

Description LAI calculation choice.

Note: North and South hemispheres are treated slightly differently.

Configuration

Referencing Table	Require-	Comment
	ment	
SUEWS_Veg.txt	MD	Coefficients are specified
		in the following parame-
		ters: LeafGrowthPower1,
		LeafGrowthPower2,
		LeafOffPower1 and
		LeafOffPower2.
		Options
		• 0 Järvi <i>et al</i> . [2011]
		• 1 Järvi <i>et al</i> . [2014]

LAIMax

Description full leaf-on summertime value

Configuration

Referencing Table	Require- ment	Comment
SUEWS_Veg.txt	MD	full leaf-on summertime value Example values: - 5.1 EveTr Breuer et al. (2003) [Breuer et al., 2003] - 5.5 DecTr Breuer et al. (2003) [Breuer et al., 2003] - 5.9 Grass Breuer et al. (2003) [Breuer et al., 2003]

LAIMin

Description leaf-off wintertime value

Configuration

Referencing Table	Require-	Comment
	ment	
SUEWS_Veg.txt	MD	leaf-off wintertime value Exam-
		ple values: - 4. EveTr [Järvi et
		al., 2011] - 1. DecTr [Järvi et al.,
		2011] - 1.6 Grass [Grimmond and
		Oke, 1991]

lat

Description Latitude [deg].

Referencing Table	Require-	Comment
	ment	
SUEWS_SiteSelect.txt	MU MU	Use coordinate system WGS84. Positive values are northern hemisphere (negative southern hemisphere). Used in radiation calculations. Note, if the total modelled area is small the latitude and longitude could be the same for each grid but small differences in radiation will not be determined. If you are defining the latitude and longitude differently between grids make
		certain that you provide enough decimal places.

ldown

Description Incoming longwave radiation [W m⁻²]

Configuration

Referencing Table	Require- ment	Comment
SSss_YYYY_data_tt.txt	0	Incoming longwave radiation [W m ⁻²]

LeafGrowthPower1

Description a parameter required by LAI calculation in *LAIEq*

Configuration

Referencing Table	Require-	Comment
	ment	
SUEWS_Veg.txt	MD	Example values • <i>LAIEq</i> = 0: 0.03 [Järvi <i>et al.</i> , 2011]
		• <i>LAIEq</i> = 1: 0.04 [Järvi <i>et al.</i> , 2014]

LeafGrowthPower2

Description a parameter required by LAI calculation [K⁻¹] in *LAIEq*

Configuration

Referencing Table	Require-	Comment
	ment	
SUEWS_Veg.txt	MD	Example values
		• <i>LAIEq</i> = 0: 0.0005 [Järvi <i>et</i>
		al., 2011]
		• <i>LAIEq</i> = 1: 0.001 [Järvi <i>et</i>
		al., 2014]

LeafOffPower1

 $\textbf{Description} \ \ \text{a parameter required by LAI calculation } [K^{\text{-}1}] \ \text{in } \textit{LAIEq}$

Configuration

Referencing Table	Require-	Comment
	ment	
SUEWS_Veg.txt	MD	Example values • <i>LAIEq</i> = 0: 0.03 [Järvi <i>et al.</i> , 2011]
		• LAIEq = 1: -1.5 [Järvi et al., 2014]

LeafOffPower2

Description a parameter required by LAI calculation [K⁻¹] in *LAIEq*

Configuration

Referencing Table	Require- ment	Comment
SUEWS_Veg.txt	MD	 Example values LAIEq = 0: 0.0005 [Järvi et al., 2011] LAIEq = 1: 0.0015 [Järvi et al., 2014]

lng

Description longitude [deg]

Referencing Table	Require-	Comment
	ment	
SUEWS_SiteSelect.txt	MU	Use coordinate system WGS84.
		For compatibility with GIS, neg-
		ative values are to the west, pos-
		itive values are to the east (e.g.
		Vancouver = -123.12; Shanghai =
		121.47) Note this is a change of
		sign convention between v2016a
		and v2017a See latitude for more
		details.

LUMPS_Cover

 $\textbf{Description} \ \ Limit \ when \ surface \ totally \ covered \ with \ water \ for \ LUMPS \ [mm]$

Configuration

Referencing Table	Require- ment	Comment
SUEWS_SiteSelect.txt	MD	Limit when surface totally covered with water [mm] Used for LUMPS surface wetness control. Default recommended value of 1 mm from Loridan <i>et al.</i> [2011].

LUMPS_DrRate

Description Drainage rate of bucket for LUMPS [mm h⁻¹]

Configuration

Referencing Table	Require- ment	Comment
SUEWS_SiteSelect.txt	MD	Drainage rate of bucket for LUMPS [mm h ⁻¹] Used for LUMPS surface wetness control. Default recommended value of 0.25 mm h ⁻¹ from Loridan <i>et al.</i> [2011].

LUMPS_MaxRes

Description Maximum water bucket reservoir [mm] Used for LUMPS surface wetness control.

Configuration

Referencing Table	Require-	Comment
	ment	
SUEWS_SiteSelect.txt	MD	Maximum water bucket reservoir
		[mm] Used for LUMPS surface
		wetness control. Default recom-
		mended value of 10 mm from
		Loridan <i>et al</i> . [2011] .

MaxQFMetab

Description Maximum value for human heat emission. [W m⁻²]

Example values: 175 Sailor and Lu (2004) [Sailor and Lu, 2004]

Configuration

Referencing Table	Require- ment	Comment
SUEWS_AnthropogenicEmission.txt	0	Maximum value for human heat emission. [W m ⁻²]

MaxFCMetab

Description Maximum (day) CO2 from human metabolism. [W m⁻²] **Configuration**

Referencing Table	Require-	Comment
	ment	
SUEWS_AnthropogenicEmission.txt	0	Maximum (day) CO2 from hu-
		man metabolism. [W m ⁻²]

MaxConductance

Referencing Table	Require- ment	Comment
SUEWS_Veg.txt	MD	Example values [mm s ⁻¹] • 7.4: EveTr [Järvi <i>et al.</i> , 2011]
		• 11.7: DecTr [Järvi <i>et al.</i> , 2011]
		• 33.1: Grass (unirrigated) [Järvi <i>et al.</i> , 2011]
		• 40.: Grass (irrigated) [Järvi et al., 2011]

MinQFMetab

Description Minimum value for human heat emission. [W m⁻²]

Example values: 75 Sailor and Lu (2004) [Sailor and Lu, 2004]

Configuration

Referencing Table	Require- ment	Comment
SUEWS_AnthropogenicEmission.txt	0	Minimum value for human heat
		emission. [W m ⁻²].

MinFCMetab

 $\textbf{Description} \ \ \text{Minimum (night) CO2 from human metabolism. [W m$^{-2}$]}$

Configuration

Referencing Table	Require- ment	Comment
SUEWS_AnthropogenicEmission.txt	0	Minimum (night) CO2 from human metabolism. [W m ⁻²]

NARP_Trans

Description Atmospheric transmissivity for NARP [-]

Configuration

Referencing Table	Require- ment	Comment
SUEWS_SiteSelect.txt	MD	Atmospheric transmissivity for NARP [-] Value must in the range 0-1. Default recommended value of 1.

nroom

Description Number of rooms per floor for building surfaces only [-]

Configuration

Referencing Table	Require- ment	Comment
SUEWS_ESTMCoefficients.txt	MU	Number of rooms per floor for building surfaces only

OBS_SMCap

Description The maximum observed soil moisture. [m³ m⁻³ or kg kg⁻¹]

Configuration

Referencing Table	Require- ment	Comment
SUEWS_Soil.txt	0	Use only if soil moisture is observed and provided in the met forcing file and <i>SMDMethod</i> = 1 or 2. Use of observed soil moisture not currently tested

OBS_SMDepth

Description The depth of soil moisture measurements. [mm]

Configuration

Referencing Table	Require-	Comment
	ment	
SUEWS_Soil.txt	0	Use only if soil moisture is ob-
		served and provided in the met
		forcing file and $SMDMethod = 1$
		or 2. Use of observed soil mois-
		ture not currently tested

OBS_SoilNotRocks

Description Fraction of soil without rocks. [-]

Configuration

Referencing Table	Require-	Comment
	ment	
SUEWS_Soil.txt	0	Use only if soil moisture is ob-
		served and provided in the met
		forcing file and $SMDMethod = 1$
		or 2. Use of observed soil mois-
		ture not currently tested

OHMCode_SummerDry

Description Code for OHM coefficients to use for this surface during dry conditions in summer, linking to *SUEWS_OHMCoefficients.txt*.

Configuration

Referencing Table	Require-	Comment
	ment	
SUEWS_NonVeg.txt	L	Code for OHM coefficients to
		use for this surface during dry
		conditions in summer. Links to
		SUEWS_OHMCoefficients.txt
		. Value of integer is arbi-
		trary but must match code
		specified in column 1 of
		SUEWS_OHMCoefficients.txt.

continues on next page

Table 7.213 – continued from previous page

Referencing Table	Require-	Comment
_	ment	
SUEWS_Veg.txt	L	Code for OHM coefficients to
		use for this surface during dry
		conditions in summer. Links to
		SUEWS_OHMCoefficients.txt
		. Value of integer is arbi-
		trary but must match code
		specified in column 1 of
		SUEWS_OHMCoefficients.txt.
SUEWS_Water.txt	L	Code for OHM coefficients to
		use for this surface during dry
		conditions in summer. Links to
		SUEWS_OHMCoefficients.txt
		. Value of integer is arbi-
		trary but must match code
		specified in column 1 of
		SUEWS_OHMCoefficients.txt.
SUEWS_Snow.txt	L	Code for OHM coefficients to
		use for this surface during dry
		conditions in summer. Links to
		SUEWS_OHMCoefficients.txt
		. Value of integer is arbi-
		trary but must match code
		specified in column 1 of
		SUEWS_OHMCoefficients.txt.

OHMCode_SummerWet

Description Code for OHM coefficients to use for this surface during wet conditions in summer, linking to *SUEWS_OHMCoefficients.txt*.

Configuration

Referencing Table	Require-	Comment
	ment	
SUEWS_NonVeg.txt	L	Code for OHM coefficients to use for this surface during wet conditions in summer. Links to
		SUEWS_OHMCoefficients.txt
		. Value of integer is arbi-
		trary but must match code
		specified in column 1 of
		SUEWS_OHMCoefficients.txt.
SUEWS_Veg.txt	L	Code for OHM coefficients to
		use for this surface during wet
		conditions in summer. Links to
		SUEWS_OHMCoefficients.txt
		. Value of integer is arbi-
		trary but must match code
		specified in column 1 of
		SUEWS_OHMCoefficients.txt.

continues on next page

Table 7.214 – continued from previous page

Referencing Table	Require-	Comment
	ment	
SUEWS_Water.txt	L	Code for OHM coefficients to use for this surface during wet conditions in summer. Links to SUEWS_OHMCoefficients.txt Value of integer is arbitrary but must match code specified in column 1 of
SUEWS_Snow.txt	L	SUEWS_OHMCoefficients.txt. Code for OHM coefficients to use for this surface during wet conditions in summer. Links to SUEWS_OHMCoefficients.txt Value of integer is arbitrary but must match code specified in column 1 of SUEWS_OHMCoefficients.txt.

OHMCode_WinterDry

Description Code for OHM coefficients to use for this surface during dry conditions in winter, linking to *SUEWS_OHMCoefficients.txt*.

Configuration

Referencing Table	Require-	Comment
	ment	
SUEWS_NonVeg.txt	L	Code for OHM coefficients to
		use for this surface during dry
		conditions in winter. Links to
		SUEWS_OHMCoefficients.txt
		. Value of integer is arbi-
		trary but must match code
		specified in column 1 of
		SUEWS_OHMCoefficients.txt.
SUEWS_Veg.txt	L	Code for OHM coefficients to
		use for this surface during dry
		conditions in winter. Links to
		SUEWS_OHMCoefficients.txt
		. Value of integer is arbi-
		trary but must match code
		specified in column 1 of
		SUEWS_OHMCoefficients.txt.
SUEWS_Water.txt	L	Code for OHM coefficients to
		use for this surface during dry
		conditions in winter. Links to
		SUEWS_OHMCoefficients.txt
		. Value of integer is arbi-
		trary but must match code
		specified in column 1 of
		SUEWS_OHMCoefficients.txt.

continues on next page

Table 7.215 – continued from previous page

Referencing Table	Require-	Comment
	ment	
SUEWS_Snow.txt	L	Code for OHM coefficients to
		use for this surface during dry
		conditions in winter. Links to
		SUEWS_OHMCoefficients.txt
		. Value of integer is arbi-
		trary but must match code
		specified in column 1 of
		SUEWS_OHMCoefficients.txt.

OHMCode_WinterWet

Description Code for OHM coefficients to use for this surface during wet conditions in winter, linking to *SUEWS_OHMCoefficients.txt*.

Configuration

Referencing Table	Require-	Comment
	ment	
SUEWS_NonVeg.txt	L	Code for OHM coefficients to use for this surface during wet conditions in winter. Links to SUEWS_OHMCoefficients.txt . Value of integer is arbitrary but must match code specified in column 1 of SUEWS_OHMCoefficients.txt.
SUEWS_Veg.txt	L	Code for OHM coefficients to use for this surface during wet conditions in winter. Links to SUEWS_OHMCoefficients.txt . Value of integer is arbitrary but must match code specified in column 1 of SUEWS_OHMCoefficients.txt.
SUEWS_Water.txt	L	Code for OHM coefficients to use for this surface during wet conditions in winter. Links to SUEWS_OHMCoefficients.txt . Value of integer is arbitrary but must match code specified in column 1 of SUEWS_OHMCoefficients.txt.
SUEWS_Snow.txt	L	Code for OHM coefficients to use for this surface during wet conditions in winter. Links to SUEWS_OHMCoefficients.txt . Value of integer is arbitrary but must match code specified in column 1 of SUEWS_OHMCoefficients.txt.

OHMThresh_SW

 $\label{lem:posterior} \textbf{Description} \ \ \text{Temperature threshold determining whether summer/winter OHM coefficients are applied [°C]}$

Configuration

Referencing Table	Require- ment	Comment
SUEWS_NonVeg.txt	MD	Temperature threshold determining whether summer/winter OHM coefficients are applied [°C] If 5-day running mean air temperature is greater than or equal to this threshold, OHM coefficients for summertime are applied; otherwise coefficients for wintertime are applied.
SUEWS_Veg.txt	MD	Temperature threshold determining whether summer/winter OHM coefficients are applied [°C] If 5-day running mean air temperature is greater than or equal to this threshold, OHM coefficients for summertime are applied; otherwise coefficients for wintertime are applied.
SUEWS_Water.txt	MD	Temperature threshold determining whether summer/winter OHM coefficients are applied [°C] If 5-day running mean air temperature is greater than or equal to this threshold, OHM coefficients for summertime are applied; otherwise coefficients for wintertime are applied.
SUEWS_Snow.txt	MD	Not actually used for Snow surface as winter wet conditions always assumed.

OHMThresh_WD

Description Soil moisture threshold determining whether wet/dry OHM coefficients are applied [-] **Configuration**

Referencing Table	Require-	Comment
	ment	
SUEWS_NonVeg.txt	MD	Not actually used for building and
		paved surfaces (as impervious).
SUEWS_Veg.txt	MD	Note that OHM coefficients for
		wet conditions are applied if the
		surface is wet.

continues on next page

Table 7.218 – continued from previous page

Referencing Table	Require- ment	Comment
SUEWS_Water.txt	MD	Not actually used for water sur-
		face (as no soil surface beneath).
SUEWS_Snow.txt	MD	Not actually used for Snow sur-
		face as winter wet conditions al-
		ways assumed.

PipeCapacity

Description Storage capacity of pipes [mm]

Configuration

Referencing Table	Require- ment	Comment
SUEWS_SiteSelect.txt	MD MU	Storage capacity of pipes [mm] Runoff amounting to less than the value specified here is assumed to be removed by pipes.

PopDensDay

Description Daytime population density (i.e. workers, tourists) [people ha⁻¹]

Configuration

Referencing Table	Require- ment	Comment
SUEWS_SiteSelect.txt	0	Daytime population density (i.e. workers, tourists) [people ha -1] Population density is required if EmissionsMethod = 2 in <i>Run-Control.nml</i> . The model will use the average of daytime and night-time population densities, unless only one is provided. If daytime population density is unknown, set to -999.

PopDensNight

Description Night-time population density (i.e. residents) [people ha⁻¹]

Configuration

Referencing Table	Require-	Comment
	ment	
SUEWS_SiteSelect.txt	0	Night-time population density
		(i.e. residents) [people ha -1]
		Population density is required if
		EmissionsMethod = 2 in <i>Run</i> -
		Control.nml . The model will
		use the average of daytime and
		night-time population densities,
		unless only one is provided. If
		night-time population density is
		unknown, set to -999.

PopProfWD

Description Code for population density profile (weekdays) linking to *Code* of *SUEWS_Profiles.txt*. **Configuration**

Referencing Table	Require- ment	Comment
SUEWS_AnthropogenicEmission.txt	0	Code for population density profile (weekdays).

PopProfWE

Description Code for population density profile (weekends) linking to *Code* of *SUEWS_Profiles.txt*. **Configuration**

Referencing Table	Require- ment	Comment
SUEWS_AnthropogenicEmission.txt	0	Code for population density pro- file (weekends)

PorosityMax

Description full leaf-on summertime value Used only for *DecTr* (can affect roughness calculation) **Configuration**

Referencing Table	Require- ment	Comment
SUEWS_Veg.txt	MD	full leaf-on summertime value
		Used only for DecTr (can affect
		roughness calculation)

PorosityMin

 $\begin{tabular}{ll} \textbf{Description} & leaf-off wintertime value Used only for \textit{DecTr} (can affect roughness calculation) \\ \textbf{Configuration} & \end{tabular}$

Referencing Table	Require-	Comment
	ment	
SUEWS_Veg.txt	MD	leaf-off wintertime value Used
		only for DecTr (can affect rough-
		ness calculation)

PrecipLimAlb

Description Limit for hourly precipitation when the ground is fully covered with snow [mm] **Configuration**

Referencing Table	Require-	Comment
	ment	
SUEWS_Snow.txt	MD	Limit for hourly precipitation
		when the ground is fully covered
		with snow. Then snow albedo is
		reset to AlbedoMax [mm]

${\tt PrecipLimSnow}$

Description Temperature limit when precipitation falls as snow [°C]

Configuration

Referencing Table	Require- ment	Comment
SUEWS_Snow.txt	MD	Auer [1974]

pres

Description Barometric pressure [kPa]

Configuration

Referencing Table	Require- ment	Comment
SSss_YYYY_data_tt.txt	MU	Barometric pressure [kPa]

qe

Description Latent heat flux [W m⁻²]

Configuration

Referencing Table	Require- ment	Comment
SSss_YYYY_data_tt.txt	0	Latent heat flux [W m ⁻²]

qf

Description Anthropogenic heat flux [W m⁻²]

Referencing Table	Require- ment	Comment
SSss_YYYY_data_tt.txt	0	Anthropogenic heat flux [W m ⁻²]

QF_A_WD

Description Base value for QF on weekdays [W m⁻² (Cap ha⁻¹)⁻¹] **Configuration**

Referencing Table	Require-	Comment
	ment	
SUEWS_AnthropogenicEmission.txt	MU O	Use with EmissionsMethod = 2
		Example values:
		• 0.3081 [Järvi <i>et al.</i> , 2011]
		• 0.1 [Järvi <i>et al.</i> , 2014]

QF_A_WE

Description Base value for QF on weekends [W m^{-2} (Cap ha^{-1}) $^{-1}$] **Configuration**

Referencing Table	Require- ment	Comment
SUEWS_AnthropogenicEmission.txt	MU O	Use with EmissionsMethod = 2 Example values: • 0.3081 [Järvi et al., 2011] • 0.1 [Järvi et al., 2014]

QF_B_WD

Description Parameter related to cooling degree days on weekdays $[W \ m^{-2} \ K^{-1} \ (Cap \ ha^{-1} \)^{-1}]$ **Configuration**

Referencing Table	Require- ment	Comment
SUEWS_AnthropogenicEmission.txt	MU O	Use with <i>EmissionsMethod</i> = 2 Example values: • 0.0099 [Järvi <i>et al.</i> , 2011] • 0.0099 [Järvi <i>et al.</i> , 2014]

QF_B_WE

Description Parameter related to cooling degree days on weekends [W m⁻² K⁻¹ (Cap ha⁻¹)⁻¹]

Referencing Table	Require-	Comment
	ment	
SUEWS_AnthropogenicEmission.txt	MU O	Use with EmissionsMethod = 2
		Example values:
		• 0.0099 [Järvi <i>et al.</i> , 2011]
		• 0.0099 [Järvi <i>et al.</i> , 2014]

QF_C_WD

Description Parameter related to heating degree days on weekdays [W m^{-2} K⁻¹ (Cap ha^{-1})⁻¹] **Configuration**

Referencing Table	Require- ment	Comment
SUEWS_AnthropogenicEmission.txt	MU O	Use with EmissionsMethod = 2 Example values: • 0.0102 [Järvi et al., 2011] • 0.0102 [Järvi et al., 2014]

QF_C_WE

Description Parameter related to heating degree days on weekends [W m^{-2} K⁻¹ (Cap ha^{-1})⁻¹] **Configuration**

Referencing Table	Require- ment	Comment
SUEWS_AnthropogenicEmission.txt	MU O	Example values: • 0.0102 [Järvi et al., 2011] • 0.0102 [Järvi et al., 2014]

q+_gkg

Description specific humidity at the top of CBL [g kg^{-1}] **Configuration**

Referencing Table	Require- ment	Comment
CBL_initial_data.txt	MU	specific humidity at the top of CBL (g kg ⁻¹)

q_gkg

Description specific humidiy in CBL [g kg⁻¹]

Referencing Table	Require-	Comment
	ment	
CBL_initial_data.txt	MU	specific humidiy in CBL (g kg ⁻¹)

qh

Description Sensible heat flux [W m⁻²]

Configuration

Referencing Table	Require- ment	Comment
SSss_YYYY_data_tt.txt	0	Sensible heat flux [W m ⁻²]

qn

Description Net all-wave radiation [W m⁻²]

Configuration

Referencing Table	Require-	Comment	
	ment		
SSss_YYYY_data_tt.txt	0	Required	if
		NetRadiationMethod	=
		1.	

qs

Description Storage heat flux [W m⁻²]

Configuration

Referencing Table	Require- ment	Comment
SSss_YYYY_data_tt.txt	0	Storage heat flux [W m ⁻²]

RadMeltFactor

Description Hourly radiation melt factor of snow [mm W⁻¹ h⁻¹]

Configuration

Referencing Table	Require- ment	Comment
SUEWS_Snow.txt	MU	Hourly radiation melt factor of snow [mm W ⁻¹ h ⁻¹]

rain

Description Rainfall [mm]

Referencing Table	Require- ment	Comment
SSss_YYYY_data_tt.txt	MU	Rainfall [mm]

RH

Description Relative Humidity [%]

Configuration

Referencing Table	Require- ment	Comment
SSss_YYYY_data_tt.txt	MU	Relative Humidity [%]

RunoffToWater

Description Fraction of above-ground runoff flowing to water surface during flooding [-] **Configuration**

Referencing Table	Require-	Comment
	ment	
SUEWS_SiteSelect.txt	MD MU	Fraction of above-ground runoff
		flowing to water surface during
		flooding [-] Value must be in the
		range 0-1. Fraction of above-
		ground runoff that can flow to the
		water surface in the case of flood-
		ing.

S1

Description A parameter related to soil moisture dependence [-]

Configuration

Referencing Table	Require- ment	Comment
SUEWS_Conductance.txt	MD	Related to soil moisture dependence [-] These will change in the future to ensure consistency with soil behaviour

S2

Description A parameter related to soil moisture dependence [mm]

Configuration

Referencing Table	Require-	Comment
	ment	
SUEWS_Conductance.txt	MD	Related to soil moisture depen-
		dence [mm] These will change in
		the future to ensure consistency
		with soil behaviour

SatHydraulicCond

Description Hydraulic conductivity for saturated soil [mm s⁻¹]

Configuration

Referencing Table	Require- ment	Comment
SUEWS_Soil.txt	MD	Hydraulic conductivity for satu-
		rated soil [mm s ⁻¹]

SDDFull

 $\begin{tabular}{ll} \textbf{Description} & The sense sence degree days (SDD) needed to initiate leaf off. [°C] \\ \textbf{Configuration} & \end{tabular}$

Referencing Table	Require- ment	Comment
SUEWS_Veg.txt	MU	This should be checked carefully for your study area using modelled LAI from the DailyState output file compared to known behaviour in the study area. See section 2.2 of Järvi et al. [2011] and Appendix A of Järvi et al. [2014] for more details. Example values: • -450: EveTr [Järvi et al., 2011] • -450: DecTr [Järvi et al., 2011] • -450: Grass [Järvi et al., 2011]

snow

Description Snowfall [mm]

Referencing Table	Require- ment	Comment
SSss_YYYY_data_tt.txt	0	Required if SnowUse = 1

SnowClearingProfWD

Description Code for snow clearing profile (weekdays) linking to *Code* of *SUEWS_Profiles.txt*. **Configuration**

Referencing Table	Require- ment	Comment
SUEWS_SiteSelect.txt	L	Code for snow clearing profile (weekdays) Provides the link to column 1 of <i>SUEWS_Profiles.txt</i> . Value of integer is arbitrary but must match code specified in column 1 of <i>SUEWS_Profiles.txt</i> . e.g. 1 means use the characteristics specified in the row of input file SUEWS_Profiles.txt which has 1 in column 1 (Code).

${\tt SnowClearingProfWE}$

Description Code for snow clearing profile (weekends) linking to *Code* of *SUEWS_Profiles.txt*. **Configuration**

Referencing Table	Require- ment	Comment
SUEWS_SiteSelect.txt	L	Code for snow clearing profile (weekends) Provides the link to column 1 of SUEWS_Profiles.txt. Value of integer is arbitrary but must match code specified in column 1 of SUEWS_Profiles.txt. e.g. 1 means use the characteristics specified in the row of input file SUEWS_Profiles.txt which has 1 in column 1 (Code). Providing the same code for SnowClearingProfWD and SnowClearingProfWE would link to the same row in SUEWS_Profiles.txt, i.e. the same profile would be used for weekdays and weekends.

SnowCode

Description Code for snow surface characteristics linking to *Code* of SUEWS_Snow.txt **Configuration**

Referencing Table	Require-	Comment
	ment	
SUEWS_SiteSelect.txt	L	Code for snow surface character-
		istics Provides the link to column
		1 of SUEWS_Snow.txt, which
		contains the attributes describing
		snow surfaces in this grid for this
		year. Value of integer is arbitrary
		but must match code specified in
		column 1 of SUEWS_Snow.txt.

SnowDensMax

Description Maximum snow density [kg m⁻³]

Configuration

SnowDensMin

Description Fresh snow density [kg m⁻³]

Configuration

SnowLimPatch

Description Limit for the snow water equivalent when snow cover starts to be patchy [mm] **Configuration**

Referencing Table	Require- ment	Comment
SUEWS_NonVeg.txt	0	Limit of snow water equivalent when the surface is fully covered with snow. Not needed if SnowUse = 0 in RunControl.nml. Example values: • 190: Paved [Järvi et al., 2014] • 190: Bldgs [Järvi et al., 2014] • 190: BSoil [Järvi et al., 2014]

continues on next page

Table 7.254 – continued from previous page

Referencing Table	Require-	Comment
	ment	
SUEWS_Veg.txt	0	Limit of snow water equivalent when the surface is fully covered with snow. Not needed if SnowUse = 0 in RunControl.nml. Example values: • 190: EveTr [Järvi et al., 2014] • 190: DecTr [Järvi et al., 2014]

${\tt SnowLimRemove}$

Description Limit of the snow water equivalent for snow removal from roads and roofs [mm] **Configuration**

Referencing Table	Require-	Comment
	ment	
SUEWS_NonVeg.txt	0	Not needed if SnowUse = 0 in
		RunControl.nml . Not available
		in this version.
		Example values [mm]
		• 40: Paved [Järvi et al.,
		2014]
		• 100: Bldgs [Järvi et al., 2014]

SoilDensity

Description Soil density [kg m⁻³]

Configuration

Referencing Table	Require- ment	Comment
SUEWS_Soil.txt	MD	Soil density [kg m ⁻³]

SoilDepth

Description Depth of soil beneath the surface [mm]

Configuration

Referencing Table	Require-	Comment
	ment	
SUEWS_Soil.txt	MD	Depth of sub-surface soil store
		[mm] i.e. the depth of soil be-
		neath the surface

SoilStoreCap

Description Limit value for *SoilDepth* [mm]

Configuration

Referencing Table	Require- ment	Comment
SUEWS_Soil.txt	MD	SoilStoreCap must not be greater than SoilDepth.

${\bf SoilTypeCode}$

Description Code for soil characteristics below this surface linking to *Code* of *SUEWS_Soil.txt* **Configuration**

Referencing Table	Require- ment	Comment
SUEWS_NonVeg.txt	L	Code for soil characteristics below this surface Provides the link to column 1 of <i>SUEWS_Soil.txt</i> , which contains the attributes describing sub-surface soil for this surface type. Value of integer is arbitrary but must match code specified in column 1 of SUEWS_Soil.txt.
SUEWS_Veg.txt	L	Code for soil characteristics below this surface Provides the link to column 1 of <i>SUEWS_Soil.txt</i> , which contains the attributes describing sub-surface soil for this surface type. Value of integer is arbitrary but must match code specified in column 1 of SUEWS_Soil.txt.

StartDLS

Description Start of the day light savings [DOY]

Referencing Table	Require-	Comment
	ment	
SUEWS_SiteSelect.txt	MU	Start of the day light savings
		[DOY] See Day Light Savings
		(DLS).

StateLimit

Description Upper limit to the surface state. [mm]

Currently only used for the water surface. Set to a large value (e.g. 20000 mm = 20 m) if the water body is substantial (lake, river, etc) or a small value (e.g. 10 mm) if water bodies are very shallow (e.g. fountains). WaterDepth (column 9) must not exceed this value.

Configuration

Referencing Table	Require- ment	Comment
SUEWS_NonVeg.txt	MD	Currently only used for the water surface
SUEWS_Veg.txt	MD	Currently only used for the water surface
SUEWS_Water.txt	MU	Surface state cannot exceed this value. Set to a large value (e.g. 20000 mm = 20 m) if the water body is substantial (lake, river, etc) or a small value (e.g. 10 mm) if water bodies are very shallow (e.g. fountains). WaterDepth (column 9) must not exceed this value.

StorageMax

Description Maximum water storage capacity for upper surfaces (i.e. canopy)

Configuration

Referencing Table	Require- ment	Comment
SUEWS_NonVeg.txt	MD	Maximum water storage capacity for upper surfaces (i.e. canopy) Min and max values are to account for seasonal variation (e.g. leaf-on/leaf-off differences for vegetated surfaces). Not currently used for non-vegetated surfaces - set the same as StorageMin. Example values: • 0.48 Paved • 0.25 Bldgs • 0.8 BSoil
SUEWS_Veg.txt	MD	Maximum water storage capacity for upper surfaces (i.e. canopy) Min/max values are to account for seasonal variation (e.g. leaf-off/leaf-on differences for vegetated surfaces) Only used for DecTr surfaces - set EveTr and Grass values the same as StorageMin. Example values: • 1.3: EveTr [Breuer et al., 2003] • 0.8: DecTr [Breuer et al., 2003]
SUEWS_Water.txt	MD	Maximum water storage capacity for upper surfaces (i.e. canopy) Min and max values are to account for seasonal variation - not used for water surfaces so set same as StorageMin.

StorageMin

Description Minimum water storage capacity for upper surfaces (i.e. canopy).

Referencing Table	Require-	Comment
_	ment	
SUEWS_NonVeg.txt	MD	Minimum water storage capacity for upper surfaces (i.e. canopy). Min/max values are to account for seasonal variation (e.g. leaf-on/leaf-off differences for vegetated surfaces). Not currently used for non-vegetated surfaces set the same as StorageMax. Example values: • 0.48 Paved • 0.25 Bldgs • 0.8 BSoil
SUEWS_Veg.txt	MD	Minimum water storage capacity for upper surfaces (i.e. canopy). Min/max values are to account for seasonal variation (e.g. leaf-off/leaf-on differences for vegetated surfaces). Example values: • 1.3 EveTr [Breuer et al., 2003] • 0.3 DecTr [Breuer et al., 2003]
SUEWS_Water.txt	MD	Minimum water storage capacity for upper surfaces (i.e. canopy). Min/max values are to account for seasonal variation - not used for water surfaces. Example values: -0.5 Water

SurfaceArea

Description Area of the grid [ha].

Configuration

Referencing Table	Require- ment	Comment
SUEWS_SiteSelect.txt	MU	Area of the grid [ha].

Surf_k1

 $\label{eq:conductivity} \textbf{Description} \ \ Thermal \ conductivity \ of the first \ layer \ [W \ m^{\text{-}1} \ K^{\text{-}1}]$ $\ \ \textbf{Configuration}$

Referencing Table	Require- ment	Comment
SUEWS_ESTMCoefficients.txt	MU	Thermal conductivity of the first layer [W m ⁻¹ K ⁻¹]

$Surf_k2$

Description Thermal conductivity of the second layer [W m⁻¹ K⁻¹]

Configuration

Referencing Table	Require- ment	Comment
SUEWS_ESTMCoefficients.txt	0	Thermal conductivity of the second layer [W m ⁻¹ K ⁻¹]

Surf_k3

Description Thermal conductivity of the third layer[W m⁻¹ K⁻¹]

Configuration

Referencing Table	Require- ment	Comment
SUEWS_ESTMCoefficients.txt	0	Thermal conductivity of the third layer[W m ⁻¹ K ⁻¹]

Surf_k4

Description Thermal conductivity of the fourth layer[W m⁻¹ K⁻¹]

Configuration

Referencing Table	Require- ment	Comment
SUEWS_ESTMCoefficients.txt	0	Thermal conductivity of the fourth layer[W m ⁻¹ K ⁻¹]

Surf_k5

 $\textbf{Description} \ \ Thermal \ conductivity \ of the \ fifth \ layer \ [W \ m^{\text{-}1} \ K^{\text{-}1}]$

Configuration

Referencing Table	Require- ment	Comment
SUEWS_ESTMCoefficients.txt	0	Thermal conductivity of the fifth layer [W m ⁻¹ K ⁻¹]

Surf_rhoCp1

Description Volumetric heat capacity of the first layer [J m⁻³ K⁻¹]

Referencing Table	Require- ment	Comment
SUEWS_ESTMCoefficients.txt	MU	Volumetric heat capacity of the first layer [J m ⁻³ K ⁻¹]

Surf_rhoCp2

Description Volumetric heat capacity of the second layer [J $\,\mathrm{m}^{\text{-}3}\,\,\mathrm{K}^{\text{-}1}$]

Configuration

Referencing Table	Require- ment	Comment
SUEWS_ESTMCoefficients.txt	0	Volumetric heat capacity of the second layer [J m ⁻³ K ⁻¹]

Surf_rhoCp3

Description Volumetric heat capacity of the third layer[J m⁻³ K⁻¹]

Configuration

Referencing Table	Require- ment	Comment
SUEWS_ESTMCoefficients.txt	0	Volumetric heat capacity of the third layer[J m ⁻³ K ⁻¹]

Surf_rhoCp4

Description Volumetric heat capacity of the fourth layer [J $m^{-3} K^{-1}$]

Configuration

Referencing Table	Require-	Comment
	ment	
SUEWS_ESTMCoefficients.txt	0	Volumetric heat capacity of the
		fourth layer [J m ⁻³ K ⁻¹]

Surf_rhoCp5

Configuration

Referencing Table	Require- ment	Comment
SUEWS_ESTMCoefficients.txt	0	Volumetric heat capacity of the fifth layer [J m ⁻³ K ⁻¹]

Surf_thick1

Description Thickness of the first layer [m] for roofs (building surfaces) and ground (all other surfaces)

Configuration

Referencing Table	Require- ment	Comment
SUEWS_ESTMCoefficients.txt	MU	Thickness of the first layer [m] for roofs (building surfaces) and ground (all other surfaces)

Surf_thick2

Description Thickness of the second layer [m] (if no second layer, set to -999.)

Configuration

Referencing Table	Require- ment	Comment
SUEWS_ESTMCoefficients.txt	0	Thickness of the second layer [m] (if no second layer, set to -999.)

Surf_thick3

Description Thickness of the third layer [m] (if no third layer, set to -999.)

Configuration

Referencing Table	Require- ment	Comment
SUEWS_ESTMCoefficients.txt	0	Thickness of the third layer [m] (if no third layer, set to -999.)

Surf_thick4

Description Thickness of the fourth layer [m] (if no fourth layer, set to -999.)

Configuration

Referencing Table	Require- ment	Comment
SUEWS_ESTMCoefficients.txt	0	Thickness of the fourth layer [m] (if no fourth layer, set to -999.)

Surf_thick5

Description Thickness of the fifth layer [m] (if no fifth layer, set to -999.)

Referencing Table	Require- ment	Comment
SUEWS_ESTMCoefficients.txt	0	Thickness of the fifth layer [m] (if no fifth layer, set to -999.)

Tair

Description Air temperature [°C]

Configuration

Referencing Table	Require-	Comment
	ment	
SSss_YYYY_data_tt.txt	MU	Air temperature [°C]

tau_a

Description Time constant for snow albedo aging in cold snow [-]

Configuration

Referencing Table	Require- ment	Comment
SUEWS_Snow.txt	MD	Time constant for snow albedo
		aging in cold snow [-]

tau_f

Description Time constant for snow albedo aging in melting snow [-]

Configuration

Referencing Table	Require-	Comment
	ment	
SUEWS_Snow.txt	MD	Time constant for snow albedo
		aging in melting snow [-]

tau_r

Description Time constant for snow density ageing [-]

Configuration

Referencing Table	Require- ment	Comment
SUEWS_Snow.txt	MD	Time constant for snow density ageing [-]

TCritic_Heating_WD

Description Critical heating temperature on weekdays [°C]

Configuration

Referencing Table	Require- ment	Comment
SUEWS_AnthropogenicEmission.txt	MU O	Use with EmissionsMethod = 1

TCritic_Heating_WE

Description Critical heating temperature on weekends [°C]

Configuration

Referencing Table	Require- ment	Comment
SUEWS_AnthropogenicEmission.txt	MU O	Use with EmissionsMethod = 1

TCritic_Cooling_WD

Description Critical cooling temperature on weekdays [°C]

Configuration

Referencing Table	Require-	Comment
	ment	
SUEWS_AnthropogenicEmission.txt	MU O	Use with EmissionsMethod = 1

TCritic_Cooling_WE

Description Critical cooling temperature on weekends [°C]

Configuration

Referencing Table	Require- ment	Comment
SUEWS_AnthropogenicEmission.txt	MU O	Use with EmissionsMethod = 1

TempMeltFactor

Description Hourly temperature melt factor of snow [mm K⁻¹ h⁻¹]

Configuration

Referencing Table	Require- ment	Comment
SUEWS_Snow.txt	MU	Hourly temperature melt factor of snow [mm K ⁻¹ h ⁻¹] (In previous model version, this parameter was 0.12)

TH

Description Upper air temperature limit [°C]

Referencing Table	Require- ment	Comment
SUEWS_Conductance.txt	MD	Upper air temperature limit [°C]

Theta+_K

Description potential temperature at the top of CBL [K]

Configuration

Referencing Table	Require- ment	Comment
CBL_initial_data.txt	MU	potential temperature at the top of CBL (K)

Theta_K

Description potential temperature in CBL [K]

Configuration

Referencing Table	Require-	Comment
	ment	
CBL_initial_data.txt	MU	potential temperature in CBL (K)

Tiair

Description Indoor air temperature [C]

Configuration

Referencing Table	Require- ment	Comment
SSss_YYYY_ESTM_Ts_data_tt.txt	MU	Indoor air temperature [C]

Timezone

Description Time zone [h] for site relative to UTC (east is positive). This should be set according to the times given in the meteorological forcing file(s).

Configuration

Referencing Table	Require-	Comment
	ment	
SUEWS_SiteSelect.txt	MU	Time zone [h] for site relative
		to UTC (east is positive). This
		should be set according to the
		times given in the meteorological
		forcing file(s).

TL

Description Lower air temperature limit [°C]

Referencing Table	Require- ment	Comment
SUEWS_Conductance.txt	MD	Lower air temperature limit [°C]

ToBldgs

Description Fraction of water going to Bldgs

Configuration

Referencing Table	Require- ment	Comment
SUEWS_WithinGridWaterDist.txt	MU	Fraction of water going to <i>Bldgs</i>

ToBSoil

Description Fraction of water going to BSoil

Configuration

Referencing Table	Require- ment	Comment
SUEWS_WithinGridWaterDist.txt	MU	Fraction of water going to BSoil

ToDecTr

Description Fraction of water going to DecTr

Configuration

Referencing Table	Require- ment	Comment
SUEWS_WithinGridWaterDist.txt	MU	Fraction of water going to <i>DecTr</i>

ToEveTr

Description Fraction of water going to *EveTr*

Configuration

Referencing Table	Require- ment	Comment
SUEWS_WithinGridWaterDist.txt	MU	Fraction of water going to <i>EveTr</i>

ToGrass

Description Fraction of water going to Grass

Referencing Table	Require- ment	Comment
SUEWS_WithinGridWaterDist.txt	MU	Fraction of water going to <i>Grass</i>

ToPaved

Description Fraction of water going to *Paved*

Configuration

Referencing Table	Require- ment	Comment
SUEWS_WithinGridWaterDist.txt	MU	Fraction of water going to <i>Paved</i>

ToRunoff

Description Fraction of water going to *Runoff*

Configuration

Referencing Table	Require- ment	Comment
SUEWS_WithinGridWaterDist.txt	MU	Fraction of water going to Runoff

ToSoilStore

Description Fraction of water going to *SoilStore*

Configuration

Referencing Table	Require- ment	Comment
SUEWS_WithinGridWaterDist.txt	MU	Fraction of water going to SoilStore

ToWater

Description Fraction of water going to *Water*

Configuration

Referencing Table	Require- ment	Comment
SUEWS_WithinGridWaterDist.txt	MU	Fraction of water going to Water

TraffProfWD

Description Code for traffic activity profile (weekdays) linking to *Code* of *SUEWS_Profiles.txt*. Not used in v2018a.

Configuration

Referencing Table	Require-	Comment
	ment	
SUEWS_AnthropogenicEmission.txt	0	Weekday building energy use [W
		m-2] Can be used for CO2 flux
		calculation.

TraffProfWE

Description Code for traffic activity profile (weekends) linking to *Code* of *SUEWS_Profiles.txt*. Not used in v2018a.

Configuration

Referencing Table	Require-	Comment
	ment	
SUEWS_AnthropogenicEmission.txt	0	Weekday building energy use [W
		m-2] Can be used for CO2 flux
		calculation.

TrafficUnits

Description Units for the traffic rate for the study area. Not used in v2018a.

Configuration

Referencing Table	Require- ment	Comment
SUEWS_AnthropogenicEmission.txt	0	Weekday building energy use [W
		m-2] Can be used for CO2 flux
		calculation.

TrafficRate_WD

Description Weekday traffic rate [veh km m^{-2} s-1] Can be used for CO2 flux calculation - not used in v2018a.

Configuration

Referencing Table	Require-	Comment
	ment	
SUEWS_SiteSelect.txt	0	Weekday traffic rate [veh km m-
		2 s-1] Can be used for CO2 flux
		calculation.

TrafficRate_WE

Description Weekend traffic rate [veh km m^{-2} s-1] Can be used for CO2 flux calculation - not used in v2018a.

Referencing Table	Require-	Comment
	ment	
SUEWS_SiteSelect.txt	0	Weekend traffic rate [veh km m-
		2 s-1] Can be used for CO2 flux
		calculation.

Troad

Description Ground surface temperature [C] (used when TsurfChoice = 1 or 2)

Configuration

Referencing Table	Require-	Comment
	ment	
SSss_YYYY_ESTM_Ts_data_tt.txt	MU	Ground surface temperature [C]
		(used when <i>TsurfChoice</i> = 1 or
		2)

Troof

Description Roof surface temperature [C] (used when *TsurfChoice* = 1 or 2)

Configuration

Referencing Table	Require-	Comment
	ment	
SSss_YYYY_ESTM_Ts_data_tt.txt	MU	Roof surface temperature [C]
		(used when <i>TsurfChoice</i> = 1 or
		2)

Tsurf

Description Bulk surface temperature [C] (used when *TsurfChoice* = 0)

Configuration

Referencing Table	Require- ment	Comment
SSss_YYYY_ESTM_Ts_data_tt.txt	MU	Bulk surface temperature [C] (used when TsurfCoice = 0)

Twall

Description Wall surface temperature [C] (used when *TsurfChoice* = 1)

Configuration

Referencing Table	Require-	Comment
	ment	
SSss_YYYY_ESTM_Ts_data_tt.txt	MU	Wall surface temperature [C]
		(used when <i>TsurfChoice</i> = 1)

Twall_e

Description East-facing wall surface temperature [C] (used when TsurfChoice = 2)

Configuration

Referencing Table	Require-	Comment
	ment	
SSss_YYYY_ESTM_Ts_data_tt.txt	MU	East-facing wall surface
		temperature [C] (used when
		TsurfChoice = 2)

Twall_n

Description North-facing wall surface temperature [C] (used when *TsurfChoice* = 2) **Configuration**

Referencing Table	Require-	Comment
	ment	
SSss_YYYY_ESTM_Ts_data_tt.txt	MU	North-facing wall surface
		temperature [C] (used when
		TsurfChoice = 2)

Twall_s

Description South-facing wall surface temperature [C] (used when TsurfChoice = 2) Configuration

Referencing Table	Require-	Comment
	ment	
SSss_YYYY_ESTM_Ts_data_tt.txt	MU	South-facing wall surface
		temperature [C] (used when
		TsurfChoice = 2)

Twall_w

Description West-facing wall surface temperature [C] (used when *TsurfChoice* = 2) **Configuration**

Referencing Table	Require-	Comment
	ment	
SSss_YYYY_ESTM_Ts_data_tt.txt	MU	West-facing wall surface temperature [C] (used when TsurfChoice = 2)

U

Description Wind speed. [m s^{-1} .] Height of the wind speed measurement (z) is needed in *SUEWS SiteSelect.txt*.

Referencing Table	Require-	Comment
	ment	
SSss_YYYY_data_tt.txt	MU	Height of the wind speed
		measurement (z) is needed in
		SUEWS_SiteSelect.txt.

Wall_k1

Description Thermal conductivity of the first layer [W m^{-1} K $^{-1}$]

Configuration

Referencing Table	Require-	Comment
	ment	
SUEWS_ESTMCoefficients.txt	MU	Thermal conductivity of the first
		layer [W m ⁻¹ K ⁻¹]

Wall_k2

Description Thermal conductivity of the second layer [W m⁻¹ K⁻¹]

Configuration

Referencing Table	Require- ment	Comment
SUEWS_ESTMCoefficients.txt	0	Thermal conductivity of the second layer [W m ⁻¹ K ⁻¹]

Wall_k3

Description Thermal conductivity of the third layer [W m^{-1} K $^{-1}$]

Configuration

Referencing Table	Require-	Comment
	ment	
SUEWS_ESTMCoefficients.txt	0	Thermal conductivity of the third
		layer [W m ⁻¹ K ⁻¹]

Wall_k4

Description Thermal conductivity of the fourth layer[W m⁻¹ K⁻¹]

Configuration

Referencing Table	Require- ment	Comment
SUEWS_ESTMCoefficients.txt	0	Thermal conductivity of the fourth layer[W m ⁻¹ K ⁻¹]

Wall_k5

Description Thermal conductivity of the fifth layer[W m⁻¹ K⁻¹]

Referencing Table	Require- ment	Comment
SUEWS_ESTMCoefficients.txt	0	Thermal conductivity of the fifth layer[W m ⁻¹ K ⁻¹]

Wall_rhoCp1

Description Volumetric heat capacity of the first layer [J m⁻³ K⁻¹]

Configuration

Referencing Table	Require- ment	Comment
SUEWS_ESTMCoefficients.txt	MU	Volumetric heat capacity of the first layer [J m ⁻³ K ⁻¹]

Wall_rhoCp2

Description Volumetric heat capacity of the second layer [J m⁻³ K⁻¹]

Configuration

Referencing Table	Require- ment	Comment
SUEWS_ESTMCoefficients.txt	0	Volumetric heat capacity of the second layer [J m ⁻³ K ⁻¹]

Wall_rhoCp3

Description Volumetric heat capacity of the third layer [J m⁻³ K⁻¹]

Configuration

Referencing Table	Require-	Comment
	ment	
SUEWS_ESTMCoefficients.txt	0	Volumetric heat capacity of the
		third layer [J m ⁻³ K ⁻¹]

Wall_rhoCp4

Description Volumetric heat capacity of the fourth layer [J m⁻³ K⁻¹]

Configuration

Referencing Table	Require- ment	Comment
SUEWS_ESTMCoefficie	ents.txt 0	Volumetric heat capacity of the fourth layer [J m ⁻³ K ⁻¹]

Wall_rhoCp5

Description Volumetric heat capacity of the fifth layer [J m⁻³ K⁻¹]

Referencing Table	Require- ment	Comment
SUEWS_ESTMCoefficients.txt	0	Volumetric heat capacity of the fifth layer [J m ⁻³ K ⁻¹]

Wall_thick1

Description Thickness of the first layer [m] for building surfaces only; set to -999 for all other surfaces **Configuration**

Referencing Table	Require-	Comment
	ment	
SUEWS_ESTMCoefficients.txt	MU	Thickness of the first layer [m] for
		building surfaces only; set to -999
		for all other surfaces

Wall_thick2

Description Thickness of the second layer [m] (if no second layer, set to -999.)

Configuration

Referencing Table	Require- ment	Comment
SUEWS_ESTMCoefficients.txt	0	Thickness of the second layer [m] (if no second layer, set to -999.)

Wall_thick3

Description Thickness of the third layer [m] (if no third layer, set to -999.)

Configuration

Referencing Table	Require- ment	Comment
SUEWS_ESTMCoefficients.txt	0	Thickness of the third layer [m] (if no third layer, set to -999.)

Wall_thick4

Description Thickness of the fourth layer [m] (if no fourth layer, set to -999.)

Configuration

Referencing Table	Require- ment	Comment
SUEWS_ESTMCoefficients.txt	0	Thickness of the fourth layer [m]
		(if no fourth layer, set to -999.)

Wall_thick5

Description Thickness of the fifth layer [m] (if no fifth layer, set to -999.)

Configuration

Referencing Table	Require- ment	Comment
SUEWS_ESTMCoefficients.txt	0	Thickness of the fifth layer [m] (if
		no fifth layer, set to -999.)

WaterDepth

Description Water depth [mm].

Configuration

Referencing Table	Require- ment	Comment
SUEWS_Water.txt	MU	Set to a large value (e.g. 20000 mm = 20 m) if the water body is substantial (lake, river, etc) or a small value (e.g. 10 mm) if water bodies are very shallow (e.g. fountains). This value must not exceed StateLimit (column 8).

WaterUseProfAutoWD

Description Code for water use profile (automatic irrigation, weekdays) linking to *Code* of *SUEWS_Profiles.txt*. Value of integer is arbitrary but must match code specified in *Code* of *SUEWS_Profiles.txt*.

Configuration

Referencing Table	Require- ment	Comment
SUEWS_SiteSelect.txt	L	Code for water use profile (automatic irrigation, weekdays) Provides the link to column 1 of <i>SUEWS_Profiles.txt</i> . Value of integer is arbitrary but must match code specified in column 1 of <i>SUEWS_Profiles.txt</i> .

WaterUseProfAutoWE

Description Code for water use profile (automatic irrigation, weekends) linking to *Code* of *SUEWS_Profiles.txt*. Value of integer is arbitrary but must match code specified in *Code* of *SUEWS_Profiles.txt*.

Referencing Table	Require- ment	Comment
SUEWS_SiteSelect.txt	L	Code for water use profile (automatic irrigation, weekends) Provides the link to column 1 of <i>SUEWS_Profiles.txt</i> . Value of integer is arbitrary but must match code specified in column 1 of <i>SUEWS_Profiles.txt</i> .

WaterUseProfManuWD

Description Code for water use profile (manual irrigation, weekdays) linking to *Code* of *SUEWS_Profiles.txt*.

Configuration

Referencing Table	Require- ment	Comment
SUEWS_SiteSelect.txt	L	Code for water use profile (manual irrigation, weekdays) Provides the link to column 1 of <i>SUEWS_Profiles.txt</i> . Value of integer is arbitrary but must match code specified in column 1 of <i>SUEWS_Profiles.txt</i> .

WaterUseProfManuWE

Description Code for water use profile (manual irrigation, weekends) linking to *Code* of *SUEWS_Profiles.txt*.

Configuration

Referencing Table	Require- ment	Comment
SUEWS_SiteSelect.txt	L	Code for water use profile (manual irrigation, weekends) Provides the link to column 1 of <i>SUEWS_Profiles.txt</i> . Value of integer is arbitrary but must match code specified in column 1 of <i>SUEWS_Profiles.txt</i> .

wdir

Description Wind direction [deg].

Configuration

Referencing Table	Require- ment	Comment
SSss_YYYY_data_tt.txt	0	Not available in this version.

WetThreshold

Description Depth of water which determines whether evaporation occurs from a partially wet or completely wet surface [mm].

Configuration

Referencing Table	Require- ment	Comment
SUEWS_NonVeg.txt	MD	Depth of water which determines whether evaporation occurs from a partially wet or completely wet surface. Example values: • 0.6 Paved • 0.6 Bldgs • 1. BSoil
SUEWS_Veg.txt	MD	Depth of water which determines whether evaporation occurs from a partially wet or completely wet surface. Example values: • 1.8 EveTr • 1. DecTr • 2. Grass
SUEWS_Water.txt	MD	Depth of water which determines whether evaporation occurs from a partially wet or completely wet surface. Example values: • 0.5 Water

${\tt WithinGridBldgsCode}$

Description Code that links to the fraction of water that flows from *Bldgs* surfaces to surfaces in columns 2-10 of *SUEWS_WithinGridWaterDist.txt*

Configuration

Referencing Table	Require- ment	Comment
SUEWS_SiteSelect.txt	L	Code that links to the fraction of water that flows from Bldgs surfaces to surfaces in columns 2-10 of SUEWS_WithinGridWaterDist.txt. Value of integer is arbitrary but must match code specified in column 1 of SUEWS_WithinGridWaterDist.txt.

WithinGridBSoilCode

Description Code that links to the fraction of water that flows from *BSoi1* surfaces to surfaces in columns 2-10 of *SUEWS_WithinGridWaterDist.txt*.

Configuration

Referencing Table	Require- ment	Comment
SUEWS_SiteSelect.txt	L	Code that links to the fraction of water that flows from BSoil surfaces to surfaces in columns 2-10 of SUEWS_WithinGridWaterDist.txt. Value of integer is arbitrary but must match code specified in column 1 of SUEWS_WithinGridWaterDist.txt.

WithinGridDecTrCode

Description Code that links to the fraction of water that flows from *DecTr* surfaces to surfaces in columns 2-10 of *SUEWS_WithinGridWaterDist.txt*.

Configuration

Referencing Table	Require- ment	Comment
SUEWS_SiteSelect.txt	L	Code that links to the fraction of water that flows from DecTr surfaces to surfaces in columns 2-10 of SUEWS_WithinGridWaterDist.txt. Value of integer is arbitrary but must match code specified in column 1 of SUEWS_WithinGridWaterDist.txt.

WithinGridEveTrCode

Description Code that links to the fraction of water that flows from *EveTr* surfaces to surfaces in columns 2-10 of *SUEWS_WithinGridWaterDist.txt*.

Configuration

Referencing Table	Require- ment	Comment
SUEWS_SiteSelect.txt	L	Code that links to the fraction of water that flows from EveTr surfaces to surfaces in columns 2-10 of SUEWS_WithinGridWaterDist.txt. Value of integer is arbitrary but must match code specified in column 1 of SUEWS_WithinGridWaterDist.txt.

WithinGridGrassCode

Description Code that links to the fraction of water that flows from *Grass* surfaces to surfaces in columns 2-10 of *SUEWS_WithinGridWaterDist.txt*.

Configuration

Referencing Table	Require- ment	Comment
SUEWS_SiteSelect.txt	L	Code that links to the fraction of water that flows from Grass surfaces to surfaces in columns 2-10 of SUEWS_WithinGridWaterDist.txt. Value of integer is arbitrary but must match code specified in column 1 of SUEWS_WithinGridWaterDist.txt.

WithinGridPavedCode

Description Code that links to the fraction of water that flows from *Paved* surfaces to surfaces in columns 2-10 of *SUEWS_WithinGridWaterDist.txt*.

Configuration

Referencing Table	Require-	Comment
	ment	
SUEWS_SiteSelect.txt	L	Code that links to the frac-
		tion of water that flows
		from Paved surfaces to sur-
		faces in columns 2-10 of
		SUEWS_WithinGridWaterDist.txt
		. Value of integer is arbi-
		trary but must match code
		specified in column 1 of
		SUEWS_WithinGridWaterDist.txt.

WithinGridWaterCode

Description Code that links to the fraction of water that flows from Water surfaces to surfaces in columns 2-10 of *SUEWS_WithinGridWaterDist.txt*.

Configuration

Referencing Table	Require-	Comment
	ment	
SUEWS_SiteSelect.txt	L	Code that links to the frac-
		tion of water that flows
		from Water surfaces to sur-
		faces in columns 2-10 of
		SUEWS_WithinGridWaterDist.txt.
		Value of integer is arbi-
		trary but must match code
		specified in column 1 of
		SUEWS_WithinGridWaterDist.txt.

Wuh

Description External water use [m³]

Configuration

Referencing Table	Require- ment	Comment
SSss_YYYY_data_tt.txt	0	External water use [m ³]

xsmd

Description Observed soil moisture; can be provided either as volumetric ($[m^3 \ m^{-3}]$ when SMDMethod = 1) or gravimetric quantity ($[kg \ kg^{-1}]$ when SMDMethod = 2). This should be used in conjunction with other soil properties in $SUEWS_Soil.txt$.

Configuration

Referencing Table	Require- ment	Comment
SSss_YYYY_data_tt.txt	0	Observed soil moisture [m ³ m ⁻³ or kg kg ⁻¹]

Year

Description Year [YYYY]

Configuration

Referencing Table	Require-	Comment
	ment	
SUEWS_SiteSelect.txt	MU	Year [YYYY] Years must be continuous. If running multiple years, ensure the rows in <i>SUEWS_SiteSelect.txt</i> are arranged so that all grids for a particular year appear on consec-
		utive lines (rather than grouping all years together for a particular grid).

z

Description Measurement height [m] for all atmospheric forcing variables set in \$\SSss_YYYY_data_tt.txt.

Configuration

Referencing Table	Require- ment	Comment
SUEWS_SiteSelect.txt	MU	z must be greater than the dis- placement height. Forcing data should be representative of the local-scale, i.e. above the height of the roughness elements.

z0

Description Roughness length for momentum [m]

Configuration

Referencing Table	Require- ment	Comment
	IIIGIII	
SUEWS_SiteSelect.txt	0	Value supplied here is used if
		RoughLenMomMethod = 1 in
		RunControl.nml; otherwise
		set to '-999' and a value will
		be calculated by the model
		(RoughLenMomMethod = 2, 3).

zd

Description Zero-plane displacement [m]

Configuration

Referencing Table	Require-	Comment
	ment	
SUEWS_SiteSelect.txt	0	Value supplied here is used if
		RoughLenMomMethod = 1 in
		RunControl.nml; otherwise
		set to -999 and a value will
		be calculated by the model
		(RoughLenMomMethod = 2, 3).

zi0

Description initial convective boundary layer height (m)

Configuration

Referencing Table	Require- ment	Comment
CBL_initial_data.txt	MU	initial convective boundary layer
		height [m]

Typical Values

Other values to add - please let us know

Generic Properties

Property	General Type	Value	Description	Reference
Albedo	Non Vegetated	0.09	Paved Helsinki	Järvi <i>et al</i> . [2014]
	Non Vegetated	0.15	Buildings Helsinki	Järvi <i>et al</i> . [2014]
	Non Vegetated	0.19	Bare Soil, Helsinki	Järvi <i>et al</i> . [2014]
	Non Vegetated	0.12	Paved	Oke [2002]
	Non Vegetated	0.15	Buildings	Oke [2002]
	Non Vegetated	0.21	Bare Soil	Oke [2002]
Emissivity	Non Vegetated	0.95	Paved	Oke [2002]
	Non Vegetated	0.91	Buildings	Oke [2002]
	Non Vegetated	0.93	Bare Soil	Oke [2002]
Surface Water	Non Vegetated	0.48	Paved	Davies and Hollis
storage capacity				[1981]
	Non Vegetated	0.25	Buildings	Falk and Niem-
				czynowicz [1978]
Albedo	Vegetation	0.1	EveTr	
	Vegetation	0.12	DecTr	
	Vegetation	0.18	Grass	
	Vegetated	0.1	EveTr Helsinki	Järvi et al. [2014]
	Vegetated	0.16	DecTr Helsinki	Järvi et al. [2014]
	Vegetated	0.19	Grass Helsinki	Järvi et al. [2014]
	Vegetated	0.1	EveTr	Oke [2002]
	Vegetated	0.18	DecTr	Oke [2002]
	Vegetated	0.21	Grass	Oke [2002]
Emissivity	Vegetated	0.98	EveTr	Oke [2002]

continues on next page

Table 7.354 – continued from previous page

Duese autor		4 – continuea trom pr		Deference
Property	General Type	Value	Description	Reference
	Vegetated	0.98	DecTr	Oke [2002]
	Vegetated	0.93	Grass	Oke [2002]
water Storage Minimum capacity (mm)	Vegetated	1.3	EveTr	Breuer et al. [2003]
	Vegetated	0.3	DecTr	Breuer et al. [2003]
	Vegetated	1.9	Grass	Breuer et al. [2003]
Maximum water storage capacity of this surface [mm]	Vegetated	1.3	EveTr	Breuer et al. [2003]
	Vegetated	0.8	DecTr	Grimmond and Oke (1991)
	Vegetated	1.9	Grass	Breuer et al. [2003]
Albedo Max (leaf on)	Vegetated	0.12	DecTr	
	Vegetated	0.18	Grass	
	Vegetated	0.1	EveTr Helsinki	Järvi <i>et al</i> . [2014]
	Vegetated	0.16	DecTr Helsinki	Järvi <i>et al</i> . [2014]
	Vegetated	0.19	Grass Helsinki	Järvi <i>et al</i> . [2014]
	Vegetated	0.1	EveTr	Oke [2002]
	Vegetated	0.18	DecTr	Oke [2002]
	Vegetated	0.21	Grass	Oke [2002]
Emissivity *View factors should be taken into account	Vegetated	0.98	EveTr	Oke [2002]
Emissivity *View factors should be taken into account	Vegetated	0.98	DecTr	Oke [2002]
Emissivity *View factors should be taken into account	Vegetated	0.93	Grass	Oke [2002]
Minimum water storage capacity of this surface [mm] • Min & max values are to account for seasonal variation (e.g. leaf-on/leaf-off differences for vegetated surfaces).	Vegetated	1.3	EveTr	Breuer et al. [2003]
	Vegetated	0.3	DecTr	Breuer et al. [2003]
	Vegetated	1.9	Grass	Breuer <i>et al.</i> [2003]

Table 7.354 – continued from previous page

Property	General Type	Value	Description	Reference
	Vegetated	1.3	EveTr	Breuer et al. [2003]
	Vegetated	0.8	DecTr	Grimmond and Oke (1991)
	Vegetated	1.9	Grass	Breuer et al. [2003]
AlbedoMin	Water	0.1	Water	Oke [2002]
AlbedoMax	Water	0.1	Water	Oke [2002]
Emissivity	Water	0.95	Water	Oke [2002]
Minimum water storage capacity of this surface [mm]	Water	0.5	Water	
Maximum water storage capacity for upper surfaces (i.e. canopy)	Water	0.5	Water	
WetThreshold	water	0.5	Water	
StateLimit • Upper limit to the surface state [mm] • State cannot exceed this value. • Set to a large value (e.g. 20000 mm = 20 m) if the water body is substantial (lake river etc) or a small value (e.g. 10 mm) if water bodies are very shallow (e.g. fountains).	Water	20000	Water	
RadMeltFactor TempMeltFactor	Snow	0.0016	Hourly radiation melt factor of snow [mm W-1 h-1] Hourly temperature melt factor of snow	
AlbedoMin	Snow	0-1	[mm °C -1 h-1] Minimum snow albedo [-] - 0.18	Järvi <i>et al</i> . [2014]

Table 7.354 – continued from previous page

Property	General Type	Value	Description	Reference
AlbedoMax * Max-	Snow	0.85	2 333.151311	Järvi <i>et al.</i> [2014]
imum snow albedo	SHOW	0.03		Jai vi ci ai. [2017]
(fresh snow) [-]				
Emissivity * Ef-	Snow	0.99	Snow	Järvi <i>et al</i> . [2014]
_	Snow	0.99	Snow	Jarvi <i>et al.</i> [2014]
fective surface				
emissivity. * View				
factors should be				
taken into account				
tau_a * Time	Snow	0.018		Järvi <i>et al</i> . [2014]
constant for snow				
albedo aging in				
cold snow [-]				
tau_f *Time con-	Snow	0.11		Järvi <i>et al</i> . [2014]
stant for snow				
albedo aging in				
melting snow [-]				
PrecipiLimAlb	Snow	2	Limit for hourly	
1 TOOIPILITIAID	SHOW		precipitation when	
			the ground is fully	
			covered with snow.	
			Then snow albedo is	
			reset to AlbedoMax	
			[mm]	
snowDensMin	Snow	100	Fresh snow density	
			[kg m-3]	
snowDensMax	Snow	400	Maximum snow	
			density [kg m-3]	
tau_r *Time con-	Snow	0.043		Järvi <i>et al</i> . [2014]
stant for snow				
density ageing [-]				
CRWMin *Min-	Snow	0.05		Järvi <i>et al</i> . [2014]
imum water				
holding capacity				
of snow [mm]				
CRWMax *Max-	Snow	0.2		Järvi <i>et al</i> . [2014]
imum water	SHOW	0.2		Jaivi et at. [2014]
midin water				
holding capacity				
of snow [mm]	Cons	2.2	The same of the sa	A [1074]
PrecipLimSnow	Snow	2.2	Temperature limit	Auer [1974]
			when precipitation	
			falls as snow [°C]	
SoilDepth	Snow	350	Depth of sub-	
			surface soil store	
			[mm] *depth of soil	
			beneath the surface	
SoilStoreCap	Soil	150	Capacity of sub-	
1			surface soil store	
			[mm]	
	I.			tinues on novt nago

Table 7.354 – continued from previous page

Property	General Type	Value	Description	Reference
			how much water can	
			be stored in the sub-	
			surface soil when at	
			maximum capacity.	
			(SoilStoreCap must	
			not be greater than	
			SoilDepth.)	
SatHydraulicCond	Soil	0.0005	Hydraulic conduc-	
			tivity for saturated	
			soil [mm s-1]	
SoilDensity	Soil	1.16	Soil density [kg m-	
			3]	
InfiltrationRate	Soil		Infiltration rate [mm	
			h-1]	
OBS_SMDepth	Soil		Depth of soil mois-	
			ture measurements	
			[mm]	
OBS_SMCap	Soil		Maxiumum ob-	
			served soil moisture	
			[m3 m-3 or kg kg-1]	
OBS_SoilNotRocks	Soil		Fraction of soil	
			without rocks [-]	

Storage Heat Flux Related

- Values determined from the literature
- If you have recommendations for others to be included please let us know.
- In the model run, canyons are excluded

Surface type	Description	a1	a2	a3	Reference
Canyon	E-W canyon	0.71	0.04	-39.7	Yoshida et al. [1990]
	N-S canyon	0.32	0.01	-27.7	Nunez and Oke [1977]
Vegetation	Mixed forest	0.11	0.11	-12.3	McCaughey [1985]
	Short grass	0.32	0.54	-27.4	Doll et al. [1985]
	Bare soil	0.38	0.56	-27.3	Novak [1981]
	Bare soil (wet)	0.33	0.07	-34.9	Fuchs and Hadas [1972]
	Bare soil (dry)	0.65	0.43	-36.5	Fuchs and Hadas [1972]
	Bare soil	0.36	0.27	-42.4	Asaeda and Ca [1993]
	Water Shallow – Turbid	0.5	0.21	-39.1	South <i>et al.</i> [1998]
	Unirrigated grass (Crops)	0.21	0.11	-16.1	Grimmond [1992]
	Short irrigated grass	0.35	-0.01	-26.3	Grimmond [1992]
Roof	Tar and gravel, Vancouver	0.17	0.1	-17	Yap [1973]
	Uppsala	0.44	0.57	-28.9	Taesler [1980]
	Membrane and concrete, Kyoto	0.82	0.34	-55.7	Yoshida et al. [1990]
	Average gravel/tar/conc. flat industrial, Vancouver	0.25	0.92	-22	Meyn and Oke [2009]
	Dry –gravel/tar/conc. flat industrial, Vancouver	0.25	0.7	-22	Meyn and Oke [2009]

continues on next page

	rable 7:000 Continued north pre-	riodo p	ago		
Surface type	Description	a1	a2	аЗ	Reference
	Wet – gravel/tar/conc. flat industrial, Vancouver	0.25	0.7	-22	Meyn and Oke [2009]
	Bitumen spread over flat industrial membrane, Vancouver	0.06	0.28	-3	Meyn and Oke [2009]
	Asphalt shingle on plywood residential roof, Vancouver	0.14	0.33	-6	Meyn and Oke [2009]
	Star – high albedo asphalt shingle residential roof	0.09	0.18	-1	Meyn and Oke [2009]
	Star - Ceramic Tile	0.07	0.26	-6	Meyn and Oke [2009]
	Star - Slate Tile	0.08	0.32	0	Meyn and Oke [2009]
	Helsinki – Suburban	0.19	0.54	-15.1	Järvi <i>et al</i> . [2014]
	Montreal – Suburban	0.12	0.24	-4.5	Järvi <i>et al</i> . [2014]
	Montreal – Urban	0.26	0.85	-21.4	Järvi <i>et al</i> . [2014]
Impervious	Concrete	0.81	0.1	-79.9	Doll et al. [1985]
	Concrete	0.85	0.32	-28.5	Asaeda and Ca [1993]
	Asphalt	0.36	0.23	-19.3	NARITA et al. [1984]
	Asphalt	0.64	0.32	-43.6	Asaeda and Ca [1993]
	Asphalt	0.82	0.68	-20.1	Anandakumar [1999]
	Asphalt (winter)	0.72	0.54	-40.2	Anandakumar [1999]
	Asphalt (summer)	0.83	-0.83	-24.6	Anandakumar [1999]

Table 7.355 – continued from previous page

The above text files (used to be stored as worksheets in **SUEWS_SiteInfo.xlsm** for versions prior to v2018a) can be edited directly (see *Data Entry*). Please note this file is subject to possible changes from version to version due to new features, modifications, etc. Please be aware of using the correct copy of this worksheet that are always shipped with the SUEWS public release.

Tip:

- 1. See SUEWS input converter for conversion of input file between different versions.
- 2. Typical values for various properties can be found here.

7.3.3 Initial Conditions file

To start the model, information about the conditions at the start of the run is required. This information is provided in initial conditions file. One file can be specified for each grid (MultipleInitFiles=1 in RunControl.nml, filename includes grid number) or, alternatively, a single file can be specified for all grids (MultipleInitFiles=0 in RunControl.nml, no grid number in the filename). After that, a new InitialConditionsSSss_YYYY.nml file will be written for each grid for the following years. It is recommended that you look at these files (written to the input directory) to check the status of various surfaces at the end or the run. This may help you get more realistic starting values if you are uncertain what they should be. Note this file will be created for each year for multiyear runs for each grid. If the run finishes before the end of the year the InitialConditions file is still written and the file name is appended with '_EndofRun'.

A sample file of InitialConditionsSSss_YYYY.nml looks like

```
&InitialConditions
LeavesOutInitially=0
SoilstorePavedState=150
SoilstoreBldgsState=150
SoilstoreEveTrstate=150
SoilstoreDecTrState=150
SoilstoreGrassState=150
SoilstoreBSoilState=150
```

(continues on next page)

(continued from previous page)

BoInit=10

The two most important pieces of information in the initial conditions file is the soil moisture and state of vegetation at the start of the run. This is the minimal information required; other information can be provided if known, otherwise SUEWS will make an estimate of initial conditions.

The parameters and their setting instructions are provided through the links below:

Note: Variables can be in any order

- Soil moisture states
 - SoilstorePavedState
 - SoilstoreBldgsState
 - SoilstoreEveTrState

- SoilstoreDecTrState
- SoilstoreGrassState
- SoilstoreBSoilState

- Vegetation parameters
 - LeavesOutInitially
 - GDD_1_0
 - GDD 2 0
 - LAIinitialEveTr
 - LAIinitialDecTr
 - LAIinitialGrass

- albEveTr0
- albDecTr0
- albGrass0
- decidCap0
- porosity0

- Recent meteorology
 - DaysSinceRain

- Temp_C0

- Above ground state
 - PavedState
 - BldgsState
 - EveTrState
 - DecTrState

- GrassState
- BSoilState
- WaterState

- Snow related parameters
 - SnowInitially
 - SnowWaterPavedState
 - SnowWaterBldgsStateSnowWaterEveTrState
 - SnowWaterIveTiStateSnowWaterDecTrState
 - Showwaterbeeristate
 - SnowWaterGrassState
 - SnowWaterBSoilStateSnowWaterWaterState
 - SnowPackPaved
 - SnowPackBldgs
 - SnowPackEveTr

- SnowPackDecTr
- SnowPackGrass
- SnowPackBSoil
- SnowPackWater
- SnowFracPaved
- SnowFracBldgs
- SnowFracEveTr
- SnowFracDecTr
- SnowFracGrass
- SnowFracBSoil
- SnowFracWater

- SnowDensPaved
- SnowDensBldgs
- SnowDensEveTr
- SnowDensDecTr

- SnowDensGrass
- SnowDensBSoil
- SnowDensWater
- SnowAlb0

Soil moisture states

SoilstorePavedState

Requirement Required

Description Initial water stored in soil beneath *Paved* surface [mm]

Configuration For maximum values, see the used soil code in SUEWS Soil.txt

SoilstoreBldgsState

Requirement Required

Description Initial water stored in soil beneath *Bldgs* surface [mm]

Configuration For maximum values, see the used soil code in SUEWS_Soil.txt

SoilstoreEveTrState

Requirement Required

Description Initial water stored in soil beneath *EveTr* surface [mm]

Configuration For maximum values, see the used soil code in *SUEWS_Soil.txt*

SoilstoreDecTrState

Requirement Required

Description Initial water stored in soil beneath *DecTr* surface [mm]

Configuration For maximum values, see the used soil code in *SUEWS_Soil.txt*

SoilstoreGrassState

Requirement Required

Description Initial water stored in soil beneath *Grass* surface [mm]

Configuration For maximum values, see the used soil code in SUEWS_Soil.txt

SoilstoreBSoilState

Requirement Required

Description Initial water stored in soil beneath *BSoil* surface [mm]

Configuration For maximum values, see the used soil code in SUEWS_Soil.txt

Vegetation parameters

LeavesOutInitially

Requirement Optional

Description Flag for initial leave status [1 or 0]

Configuration If the model run starts in winter when trees are bare, set <code>LeavesOutInitially = 0</code> and the vegetation parameters will be set accordingly based on the values set in <code>SUEWS_SiteInfo.xlsm</code>. If the model run starts in summer when leaves are fully out, set <code>LeavesOutInitially = 1</code> and the vegetation parameters will be set accordingly based on the values set in <code>SUEWS_SiteInfo.xlsm</code>. Not LeavesOutInitially can only be set to 0, 1 or -999 (fractional values cannot be used to indicate partial leaf-out). The value of <code>LeavesOutInitially</code> overrides any values provided for the individual vegetation parameters. To prevent <code>LeavesOutInitially</code> from setting the initial conditions, either omit it from the namelist or set to -999. If values are provided individually, they should be consistent the information provided in <code>SUEWS_Veg.txt</code> and the time of year. If values are provided individually, values for all required surfaces must be provided (i.e. specifying only <code>albGrass0</code> but not <code>albDecTr0</code> nor <code>albEveTr0</code> is not permitted).

GDD_1_0

Requirement Optional

Description GDD related initial value

Configuration Cannot be negative. If leaves are already full, then this should be the same as *GDDFul1* in *SUEWS_Veg.txt*. If winter, set to 0. It is important that the vegetation characteristics are set correctly (i.e. for the start of the run in summer/winter).

GDD_2_0

Requirement Optional

Description GDD related initial value

Configuration Cannot be positive If the leaves are full but in early/mid summer then set to 0. If late summer or autumn, this should be a negative value. If leaves are off, then use the values of *SDDFul1* in *SUEWS_Veg.txt* to guide your minimum value. It is important that the vegetation characteristics are set correctly (i.e. for the start of the run in summer/winter).

LAIinitialEveTr

Requirement Optional

Description Initial LAI for evergreen trees *EveTr*.

Configuration The recommended values can be found from *SUEWS_Veg.txt*

LAIinitialDecTr

Requirement Optional

Description Initial LAI for deciduous trees *DecTr*.

Configuration The recommended values can be found from SUEWS Veg.txt

LAIinitialGrass

Requirement Optional

Description Initial LAI for irrigated grass *Grass*.

Configuration The recommended values can be found from SUEWS_Veg.txt

albEveTr0

Requirement Optional

Description Albedo of evergreen surface *EveTr* on day 0 of run

Configuration The recommended values can be found from SUEWS_Veg.txt

albDecTr0

Requirement Optional

Description Albedo of deciduous surface *DecTr* on day 0 of run

Configuration The recommended values can be found from SUEWS_Veg.txt

albGrass0

Requirement Optional

Description Albedo of grass surface *Grass* on day 0 of run

Configuration The recommended values can be found from *SUEWS_Veg.txt*

decidCap0

Requirement Optional

Description Storage capacity of deciduous surface *DecTr* on day 0 of run.

Configuration The recommended values can be found from *SUEWS Veg.txt*

porosity0

Requirement Optional

Description Porosity of deciduous vegetation on day 0 of run.

Configuration This varies between 0.2 (leaf-on) and 0.6 (leaf-off). The recommended values can be found from *SUEWS_Veg.txt*

Recent meteorology

DaysSinceRain

Requirement Optional

Description Days since rain [d]

Configuration Important to use correct value if starting in summer season If starting when external water use is not occurring it will be reset with the first rain so can just be set to 0. If unknown, SUEWS sets to zero by default. Used to model irrigation.

Temp_C0

Requirement Optional

Description Initial air temperature [degC]

Configuration If unknown, SUEWS uses the mean temperature for the first day of the run.

Above ground state

PavedState

Requirement Optional

Description Initial wetness condition on Paved

Configuration If unknown, model assumes dry surfaces (acceptable as rainfall or irrigation will update these states quickly).

BldgsState

Requirement Optional

Description Initial wetness condition on *Bldgs*

Configuration If unknown, model assumes dry surfaces (acceptable as rainfall or irrigation will update these states quickly).

EveTrState

Requirement Optional

Description Initial wetness condition on *EveTr*

Configuration If unknown, model assumes dry surfaces (acceptable as rainfall or irrigation will update these states quickly).

DecTrState

Requirement Optional

Description Initial wetness condition on *DecTr*

Configuration If unknown, model assumes dry surfaces (acceptable as rainfall or irrigation will update these states quickly).

GrassState

Requirement Optional

Description Initial wetness condition on *Grass*

Configuration If unknown, model assumes dry surfaces (acceptable as rainfall or irrigation will update these states quickly).

BSoilState

Requirement Optional

Description Initial wetness condition on *BSoil*

Configuration If unknown, model assumes dry surfaces (acceptable as rainfall or irrigation will update these states quickly).

WaterState

Requirement Optional

Description Initial wetness condition on Water

Configuration For a large water body (e.g. river, sea, lake) set WaterState to a large value, e.g. 20000 mm; for small water bodies (e.g. ponds, fountains) set WaterState to smaller value, e.g. 1000 mm. This value must not exceed StateLimit specified in SUEWS_Water.txt . If unknown, model uses value of WaterDepth specified in SUEWS_Water.txt .

Snow related parameters

SnowInitially

Requirement Optional

Description Flag for initial snow status [0 or 1]

Configuration If the model run starts when there is no snow on the ground, set <code>SnowInitially = 0</code> and the snow-related parameters will be set accordingly. If the model run starts when there is snow on the ground, the following snow-related parameters must be set appropriately. The value of <code>SnowInitially</code> overrides any values provided for the individual snow-related parameters. To prevent <code>SnowInitially</code> from setting the initial conditions, either omit it from the namelist or set to -999. If values are provided individually, they should be consistent the information provided in <code>SUEWS_Snow.txt</code>.

SnowWaterPavedState

Requirement Optional

Description Initial amount of liquid water in the snow on paved surfaces *Paved*

Configuration The recommended values can be found from *SUEWS_Snow.txt*

${\tt SnowWaterBldgsState}$

Requirement Optional

Description Initial amount of liquid water in the snow on buildings *Bldgs*

Configuration The recommended values can be found from SUEWS_Snow.txt

SnowWaterEveTrState

Requirement Optional

Description Initial amount of liquid water in the snow on evergreen trees *EveTr*

Configuration The recommended values can be found from SUEWS_Snow.txt

SnowWaterDecTrState

Requirement Optional

Description Initial amount of liquid water in the snow on deciduous trees *DecTr*

Configuration The recommended values can be found from *SUEWS_Snow.txt*

SnowWaterGrassState

Requirement Optional

Description Initial amount of liquid water in the snow on grass surfaces *Grass*

Configuration The recommended values can be found from SUEWS_Snow.txt

SnowWaterBSoilState

Requirement Optional

Description Initial amount of liquid water in the snow on bare soil surfaces BSoil

Configuration The recommended values can be found from *SUEWS_Snow.txt*

SnowWaterWaterState

Requirement Optional

Description Initial amount of liquid water in the snow in water *Water*

Configuration The recommended values can be found from *SUEWS_Snow.txt*

SnowPackPaved

Requirement Optional

Description Initial snow water equivalent if the snow on paved surfaces *Paved*

Configuration The recommended values can be found from SUEWS_Snow.txt

SnowPackBldgs

Requirement Optional

Description Initial snow water equivalent if the snow on buildings *Bldgs*

Configuration The recommended values can be found from SUEWS_Snow.txt

SnowPackEveTr

Requirement Optional

Description Initial snow water equivalent if the snow on evergreen trees *EveTr*

Configuration The recommended values can be found from SUEWS_Snow.txt

SnowPackDecTr

Requirement Optional

Description Initial snow water equivalent if the snow on deciduous trees *DecTr*

Configuration The recommended values can be found from SUEWS_Snow.txt

SnowPackGrass

Requirement Optional

Description Initial snow water equivalent if the snow on grass surfaces *Grass*

Configuration The recommended values can be found from *SUEWS_Snow.txt*

SnowPackBSoil

Requirement Optional

Description Initial snow water equivalent if the snow on bare soil surfaces *BSoil*

Configuration The recommended values can be found from SUEWS_Snow.txt

SnowPackWater

Requirement Optional

Description Initial snow water equivalent if the snow on water *Water*

Configuration The recommended values can be found from SUEWS_Snow.txt

SnowFracPaved

Requirement Optional

Description Initial plan area fraction of snow on paved surfaces *Paved*

Configuration The recommended values can be found from SUEWS_Snow.txt

SnowFracBldgs

Requirement Optional

Description Initial plan area fraction of snow on buildings *Bldgs*

Configuration The recommended values can be found from SUEWS_Snow.txt

SnowFracEveTr

Requirement Optional

Description Initial plan area fraction of snow on evergreen trees *EveTr*

Configuration The recommended values can be found from SUEWS_Snow.txt

SnowFracDecTr

Requirement Optional

Description Initial plan area fraction of snow on deciduous trees *DecTr*

Configuration The recommended values can be found from SUEWS_Snow.txt

SnowFracGrass

Requirement Optional

Description Initial plan area fraction of snow on grass surfaces *Grass*

Configuration The recommended values can be found from SUEWS_Snow.txt

SnowFracBSoil

Requirement Optional

Description Initial plan area fraction of snow on bare soil surfaces *BSoil*

Configuration The recommended values can be found from *SUEWS_Snow.txt*

SnowFracWater

Requirement Optional

Description Initial plan area fraction of snow on water *Water*

Configuration The recommended values can be found from SUEWS_Snow.txt

SnowDensPaved

Requirement Optional

Description Initial snow density on paved surfaces *Paved*

Configuration The recommended values can be found from SUEWS_Snow.txt

SnowDensBldgs

Requirement Optional

Description Initial snow density on buildings *Bldgs*

Configuration The recommended values can be found from SUEWS_Snow.txt

SnowDensEveTr

Requirement Optional

Description Initial snow density on evergreen trees *EveTr*

Configuration The recommended values can be found from SUEWS_Snow.txt

SnowDensDecTr

Requirement Optional

Description Initial snow density on deciduous trees *DecTr*

Configuration The recommended values can be found from SUEWS_Snow.txt

SnowDensGrass

Requirement Optional

Description Initial snow density on grass surfaces *Grass*

Configuration The recommended values can be found from SUEWS_Snow.txt

SnowDensBSoil

Requirement Optional

Description Initial snow density on bare soil surfaces *BSoil*

Configuration The recommended values can be found from SUEWS_Snow.txt

SnowDensWater

Requirement Optional

Description Initial snow density on Water

Configuration The recommended values can be found from *SUEWS_Snow.txt*

SnowAlb0

Requirement Optional

Description Initial snow albedo

Configuration The recommended values can be found from SUEWS_Snow.txt

7.3.4 Meteorological Input File

SUEWS is designed to run using commonly measured meteorological variables (e.g. incoming solar radiation, air temperature, relative humidity, pressure, wind speed, etc.).

When preparing this input file, please note the following:

- Required inputs must be continuous i.e. gap fill any missing data.
- Temporal information (i.e., iy, id, it and imin) should be in **local time** and indicate the ending timestamp of corresponding periods: e.g. for hourly data, 2021-09-12 13:00 indicates a record for the period between 2021-09-12 12:00 (inclusive) and 2021-09-12 13:00 (exclusive).
- The *table* below gives the must-use (MU) and optional (0) additional input variables. If an optional input variable (0) is not available or will not be used by the model, enter '-999' for this column.
- One single meteorological file can be used for all grids (**MultipleMetFiles=0** in *RunControl.nml*, no grid number in file name) if appropriate for the study area.
- Separate met files can be used for each grid if data are available (MultipleMetFiles=1 in RunControl.nml, filename includes grid number).
- The meteorological forcing file names should be appended with the temporal resolution in minutes: tt in SS_YYYY_data_tt.txt (or SSss_YYYY_data_tt.txt for multiple grids).
- Separate met forcing files should be provided for each year.
- Files do not need to start/end at the start/end of the year, but they must contain a whole number of days.
- The meteorological input file should match the information given in SUEWS_SiteSelect.txt.
- If a partial year is used that specific year must be given in SUEWS_SiteSelect.txt.
- If multiple years are used, all years should be included in SUEWS_SiteSelect.txt.
- If a *whole year* (e.g. 2011) is intended to be modelled using and hourly resolution dataset, the number of lines in the met data file should be 8760 and begin and end with:

```
iy id it imin
2011 1 1 0 ...
2012 1 0 0 ...
```

SSss YYYY data tt.txt

Changed in version v2017a: Since v2017a forcing files no longer need to end with two rows containing '-9' in the first column.

Main meteorological data file.

No.	Use	Column	Description
		Name	
1	MU	iy	Year [YYYY]
2	MU	id	Day of year [DOY]
3	MU	it	Hour [H]
4	MU	imin	Minute [M]
5	0	qn	Net all-wave radiation [W m^{-2}] (Required if NetRadiationMethod = 0.)
6	0	qh	Sensible heat flux [W m ⁻²]
7	0	qe	Latent heat flux [W m ⁻²]
8	0	qs	Storage heat flux [W m ⁻²]
9	0	qf	Anthropogenic heat flux [W m ⁻²]
10	MU	U	Wind speed [m s-1] (measurement height (z) is needed in SUEWS_SiteSelect.txt)
11	MU	RH	Relative Humidity [%] (measurement height (z) is needed in
			SUEWS_SiteSelect.txt)
12	MU	Tair	Air temperature [°C] (measurement height (z) is needed in SUEWS_SiteSelect.txt)
13	MU	pres	Barometric pressure [kPa] (measurement height (z) is needed in
			SUEWS_SiteSelect.txt)
14	MU	rain	Rainfall [mm] (measurement height (z) is needed in SUEWS_SiteSelect.txt)
15	MU	kdown	Incoming shortwave radiation [W m ⁻²] Must be > 0 W m ⁻² .
16	0	snow	Snow cover fraction $(0-1)$ [-] (Required if $SnowUse = 1$)
17	0	ldown	Incoming longwave radiation [W m ⁻²]
18	0	fcld	Cloud fraction [tenths]
19	0	Wuh	External water use [m ³]
20	0	xsmd	Observed soil moisture [m ³ m ⁻³] or [kg kg ⁻¹]
21	0	lai	Observed leaf area index [m ⁻² m ⁻²]
22	0	kdiff	Diffuse radiation [W m ⁻²] Recommended in this version. if <i>SOLWEIGUse</i> = 1
23	0	kdir	Direct radiation [W m ⁻²] Recommended in this version. if <i>SOLWEIGUse</i> = 1
24	0	wdir	Wind direction [°] Not available in this version.

7.3.5 CBL input files

Main references for this part of the model: Onomura et al. [2015] and Cleugh and Grimmond [2001].

If CBL slab model is used (CBLUse = 1 in RunControl.nml) the following files are needed.

Filename	Purpose		
CBL_initial_data.txt	Gives initial data every morning * when CBL slab		
	model starts running. * filename must match the Ini-		
	tialData_FileName in CBLInput.nml * fixed formats.		
CBLInput.nml	Specifies run options, parameters and input file names.		
	* Can be in any order		

CBL initial data.txt

This file should give initial data every morning when CBL slab model starts running. The file name should match the InitialData_FileName in CBLInput.nml.

Definitions and example file of initial values prepared for Sacramento.

No.	Column name	Description
1	id	Day of year [DOY]
2	zi0	Initial convective boundary layer height (m)
3	gamt_Km	Vertical gradient of potential temperature (K m ⁻¹) strength of the inversion
4	gamq_gkgm	Vertical gradient of specific humidity (g kg ⁻¹ m ⁻¹)
5	Theta+_K	Potential temperature at the top of CBL (K)
6	q+_gkg	Specific humidity at the top of CBL (g kg ⁻¹)
7	Theta_K	Potential temperature in CBL (K)
8	q_gkg	Specific humidiy in CBL (g kg ⁻¹)

• gamt_Km and gamq_gkgm written to two significant figures are required for the model performance in appropriate ranges [Onomura *et al.*, 2015].

id	zi0	gamt_Km	gamq_gkgm	Theta+_K	q+_gkg	theta_K	q_gkg
234	188	0.0032	0.00082	290.4	9.6	288.7	8.3
235	197	0.0089	0.089	290.2	8.4	288.3	8.7

CBLInput.nml

sample file of CBLInput.nml looks like

```
&CBLInput
EntrainmentType=1
                        ! 1.Tennekes and Driedonks(1981), 2.McNaughton and.
→Springgs(1986), 3.Rayner and Watson(1991), 4.Tennekes(1973),
QH_choice=1
                        ! 1.suews 2.lumps 3.obs
CO2_included=0
cblday(236)=1
cblday(258)=1
cblday(259)=1
cblday(260)=1
cblday(285)=1
cblday(297)=1
wsb = -0.01
InitialData_use=1
InitialDataFileName='CBLinputfiles/CBL_initial_data.txt'
sondeflag=0
FileSonde(234)='CBLinputfiles\Sonde_Sc_1991_0822_0650.txt'
FileSonde(235)='CBLinputfiles\Sonde_Sc_1991_0823_0715.txt'
FileSonde(236)='CBLinputfiles\Sonde_Sc_1991_0824_0647.txt'
FileSonde(238)='CBLinputfiles\Sonde_Sc_1991_0826_0642.txt'
FileSonde(239)='CBLinputfiles\Sonde_Sc_1991_0827_0640.txt'
FileSonde(240)='CBLinputfiles\Sonde_Sc_1991_0828_0640.txt'
```

Note: The file contents can be in any order.

The parameters and their setting instructions are provided through *the links below*:

- EntrainmentType
- QH_Choice
- InitialData_use
- Sondeflag
- CBLday(id)

- CO2_included
- FileSonde(id)
- InitialDataFileName
- Wsl

CBLinput

EntrainmentType

Requirement Required

Description Determines entrainment scheme. See Cleugh and Grimmond 2000 [16] for details.

Configuration

Value	Comments
1	Tennekes and Driedonks (1981) - Recommended in this version.
2	McNaughton and Springs (1986)
3	Rayner and Watson (1991)
4	Tennekes (1973)

QH_Choice

Requirement Required

Description Determines QH used for CBL model.

Configuration

Value	Comments
1	QH modelled by SUEWS
2	QH modelled by LUMPS
3	Observed QH values are used from the meteorological input file

InitialData_use

Requirement Required

Description Determines initial values (see *CBL_initial_data.txt*)

Configuration

Value	Comments
0	All initial values are calculated. Not available in this version.
1	Take zi0, gamt_Km and gamq_gkgm from input data file. Theta+_K, q+_gkg,
	Theta_K and q_gkg are calculated using Temp_C, avrh and Pres_kPa in
	meteorological input file.
2	Take all initial values from input data file (see CBL_Initial_data.txt).

Sondeflag

Requirement Required

Description to fill

Configuration

Value	Comments
0	Does not read radiosonde vertical profile data - Recommended in this version.
1	Reads radiosonde vertical profile data

CBLday(id)

Requirement Required

Description Set CBLday(id) = 1 If CBL model is set to run for DOY 175–177, CBLday(175) = 1, CBLday(176) = 1, CBLday(177) = 1

Configuration to fill

CO2_included

Requirement Required

Description Set to zero in current version

Configuration to fill

FileSonde(id)

Requirement Required

Description If Sondeflag=1, write the file name including the path from site directory e.g. FileSonde(id)= 'CBLinputfilesXXX.txt', XXX is an arbitrary name.

Configuration to fill

InitialDataFileName

Requirement Required

Description If InitialData_use 1, write the file name including the path from site directory e.g. InitialDataFileName='CBLinputfilesCBL_initial_data.txt'

Configuration to fill

Wsb

Requirement Required

Description Subsidence velocity (m s⁻¹) in eq. 1 and 2 of Onomura et al. (2015) [17]. (-0.01 m s⁻¹ **Recommended in this version.**)

Configuration to fill

7.3.6 ESTM input files

SUEWS_ESTMCoefficients.txt

Note ESTM is under development in this release and should not be used!

The Element Surface Temperature Method (ESTM) [Offerle *et al.*, 2005] calculates the net storage heat flux from surface temperatures. In the method the three-dimensional urban volume is reduced to four 1-d elements (i.e. building roofs, walls, and internal mass and ground (road, vegetation, etc)). The storage heat flux is calculated from the heat conduction through the different elements. For the inside surfaces of the roof and walls, and both surfaces for the internal mass (ceilings/floors, internal walls), the surface temperature of the element is determined by setting the conductive heat transfer out of (in to) the surface equal to the radiative and convective heat losses (gains). Each element (roof, wall, internal element and ground) can have maximum five layers and each layer has three parameters tied to it: thickness (x), thermal conductivity (k), volumetric heat capacity (rhoCp).

If ESTM is used (StorageHeatMethod =4), the files SUEWS_ESTMCoefficients.txt, ESTMinput.nml and SSss_YYYY_ESTM_Ts_data_tt.txt should be prepared.

SUEWS_ESTMCoefficients.txt contains the parameters for the layers of each of the elements (roofs, wall, ground, internal mass).

- If less than five layers are used, the parameters for unused layers should be set to -999.
- The ESTM coefficients with the prefix *Surf_* must be specified for each surface type (plus snow) but the *Wall_* and *Internal_* variables apply to the building surfaces only.
- For each grid, one set of ESTM coefficients must be specified for each surface type; for paved and building surfaces it is possible to specify up to three and five sets of coefficients per grid (e.g. to represent different building materials) using the relevant columns in SUEWS_SiteSelect.txt. For the model to use these columns in site select, the ESTMCode column in SUEWS_NonVeg.txt should be set to zero.

The following input files are required if ESTM is used to calculate the storage heat flux.

ESTMinput.nml

ESTMinput.nml specifies the model settings and default values.

A sample file of **ESTMinput.nml** looks like

Note: The file contents can be in any order.

The parameters and their setting instructions are provided through *the links below*:

- TsurfChoice
- evolveTibld
- IbldCHmod
- LBC_soil

- Theat_fix
- Theat_off
- Theat_on

ESTMinput

TsurfChoice

Requirement Required

Description Source of surface temperature data used.

Configuration

Value	Comments
0	Tsurf in SSss_YYYY_ESTM_Ts_data_tt.txt used for all surface elements.
1	Input surface temperature are different for ground, roof and wall.
2	Wall surface temperature is different for four directions.

evolveTibld

Requirement Required

Description Source of internal building temperature (Tibld)

Configuration

Value	Comments
0	Tiair in SSss_YYYY_ESTM_Ts_data_tt.txt used.
1	Tibld calculated considering the effect of anthropogenic heat from HVAC
2	Tibld calculated without considering the influence of HVAC.

IbldCHmod

Requirement Required

Description Method to calculate internal convective heat exchange coefficients (CH) for internal building, wall and roof if evolveTibld is 1 or 2.

Configuration

Value	Comments	
0	CHs are read from SUEWS_ESTMcoefficients.txt.	
1	CHs are calculated based on ASHRAE (2001)	
2	CHs are calculated based on Awbi (1998).	

LBC_soil

Requirement Required

Description Soil temperature at lowest boundary condition [C]

Configuration to fill

Theat_fix

Requirement Required

Description Ideal internal building temperature [C]

Configuration to fill

Theat_off

Requirement Required

Description Temperature at which heat control is turned off (used when evolveTibld=1) [C]

Configuration to fill

Theat_on

Requirement Required

Description Temperature at which heat control is turned on (used when evolveTibld =1) [C]

Configuration to fill

SSss_YYYY_ESTM_Ts_data_tt.txt

SSss_YYYY_ESTM_Ts_data_tt.txt contains a time-series of input surface temperature for roof, wall, ground and internal elements.

No.	Column Name	Use	Description	
1	iy	MU	Year [YYYY]	
2	id	MU	Day of year [DOY]	
3	it	MU	Hour [H]	
4	imin	MU	Minute [M]	
5	Tiair	MU	Indoor air temperature [C]	
6	Tsurf	MU	Bulk surface temperature [C] (used when TsurfChoice = 0)	
7	Troof	MU	Roof surface temperature [C] (used when TsurfChoice = 1 or 2)	
8	Troad	MU	Ground surface temperature [C] (used when TsurfChoice = 1 or 2)	
9	Twall	MU	Wall surface temperature [C] (used when TsurfChoice = 1)	
10	Twall_n	MU	North-facing wall surface temperature [C] (used when <i>TsurfChoice</i> = 2)	
11	Twall_e	MU	East-facing wall surface temperature [C] (used when TsurfChoice = 2)	
12	Twall_s	MU	South-facing wall surface temperature [C] (used when TsurfChoice = 2)	
13	Twall_w	MU	West-facing wall surface temperature [C] (used when TsurfChoice = 2)	

7.3.7 SUEWS-SPARTACUS (SS) input files

To run SUEWS-SS the SS specific files that need to be modified are:

- RunControl.nml
- SUEWS_SPARTACUS.nml

Non-SS specific SUEWS input file parameters also need to have appropriate values. For example, LAI, albedos and emissivities are used by SUEWS-SS as explained in *More background information*.

RunControl.nml

See NetRadiationMethod (sensible values are 1001, 1002 or 1003) in RunControl.nml parameter.

SUEWS_SPARTACUS.nml

This file is used to specify the SS model options when coupled to SUEWS.

A sample file of **SUEWS_SPARTACUS.nml** is shown below:

```
&Spartacus
nlayers = 1
use_sw_direct_albedo = false
n_vegetation_region_urban = 1
nsw = 1
nlw = 1
nspec = 1
n_stream_sw_urban = 8
n_stream_lw_urban = 8
sw_dn_direct_frac = 0.0
air_ext_sw = 0.0
air_ssa_sw = 0.95
veg_ssa_sw = 0.13
air_ext_lw = 0.0
air_ssa_lw = 0.0
veg_ssa_lw = 0.01
ground_albedo_dir_mult_fact = 1.
```

The parameters and their setting instructions are provided through the links below:

Geometry-related options

- nlayers
- n_vegetation_region_urban
- height
- building_frac
- building_scale

- veg_frac
- veg_scale
- veg_contact_fraction
- wall_specular_frac

Shortwave-related options

- use_sw_direct_albedo
- sw_dn_direct_frac
- n_stream_sw_urban
- air_ext_sw
- air_ssa_sw

- veg_ssa_sw
- ground_albedo_dir_mult_fact
- roof_albedo
- wall_albedo

Longwave-related options

- n_stream_lw_urban
- air_ext_lw
- air_ssa_lw
- veg_ssa_lw

- veg_fsd
- roof_emissivity
- wall_emissivity
- roof_albedo_dir_mult_fact

7.3.8 SUEWS input converter

Note: The SUEWS table converter has been integrated into SuPy as a command line tool *suews-convert* since v2020a. Please install SuPy and run *suews-convert* to convert input tables from an older version to a newer one.

Usage

Please refer to the SuPy API page.

Example (from 2018a to 2020a)

Assuming your 2018a files are all included in the folder your_2018a_folder and your desirable converted files should be placed in a new folder your_2020a_folder, please do the following in your command line tool:

```
suews-convert -f 2018a -t 2020a -i your_2018a_folder -o your_2020a_folder
```

Tip: suews-convert will use the RunControl.nml file in your original folder to determine the location of input tables.

7.4 Output files

7.4.1 Runtime diagnostic information

Error messages: problems.txt

If there are problems running the program serious error messages will be written to problems.txt.

- Serious problems will usually cause the program to stop after writing the error message. If this is the case, the last line of *Error messages: problems.txt* will contain a non-zero number (the error code).
- If the program runs successfully, problems.txt file ends with:

```
Run completed.
```

SUEWS has a large number of error messages included to try to capture common errors to help the user determine what the problem is. If you encounter an error that does not provide an error message please capture the details so we can hopefully provide better error messages in future.

See *Troubleshooting* section for help solving problems. If the file paths are not correct the program will return an error when run (see *Workflow of using SUEWS*).

7.4. Output files 171

Warning messages: warnings.txt

- If the program encounters a more minor issue it will not stop but a warning may be written to warnings.txt. It is advisable to check the warnings to ensure there is not a more serious problem.
- The warnings.txt file can be large (over several GBs) given warning messages are written out during a large scale simulation, you can use tail/head to view the ending/starting part without opening the whole file on Unix-like systems (Linux/mac OS), which may slow down your system.
- To prevent warnings.txt from being written, set SuppressWarnings to 1 in RunControl.nml.
- Warning messages are usually written with a grid number, timestamp and error count. If the problem occurs in the initial stages (i.e. before grid numbers and timestamps are assigned, these are printed as 00000).

Summary of model parameters: SS_FileChoices.txt

For each run, the model parameters specified in the input files are written out to the file SS_FileChoices.txt.

7.4.2 Model output files

Note: Temporal information in output files (i.e., iy, id, it and imin if existing) are in **local time** (i.e. consistent with *Meteorological Input File*) and indicate the ending timestamp of corresponding periods: e.g. for hourly data, 2021-09-12 13:00 indicates a record for the period between 2021-09-12 12:00 (inclusive) and 2021-09-12 13:00 (exclusive).

SSss_YYYY_SUEWS_TT.txt

SUEWS produces the main output file (SSss_YYYY_SUEWS_tt.txt) with time resolution (TT min) set by ResolutionFilesOut in RunControl.nml.

Before these main data files are written out, SUEWS provides a summary of the column names, units and variables included in the file Ss_YYYY_TT_OutputFormat.txt (one file per run).

The variables included in the main output file are determined according to WriteOutOption set in RunControl.nml.

Column	Name	WriteOutOption	Description
1	Year	0,1,2	Year [YYYY]
2	DOY	0,1,2	Day of year [DOY]
3	Hour	0,1,2	Hour [H]
4	Min	0,1,2	Minute [M]
5	Dectime	0,1,2	Decimal time [-]
6	Kdown	0,1,2	Incoming shortwave radiation [W m ⁻²]
7	Kup	0,1,2	Outgoing shortwave radiation [W m ⁻²]
8	Ldown	0,1,2	Incoming longwave radiation [W m ⁻²]
9	Lup	0,1,2	Outgoing longwave radiation [W m ⁻²]
10	Tsurf	0,1,2	Bulk surface temperature [°C]
11	QN	0,1,2	Net all-wave radiation [W m ⁻²]
12	QF	0,1,2	Anthropogenic heat flux [W m ⁻²]
13	QS	0,1,2	Storage heat flux [W m ⁻²]
14	QH	0,1,2	Sensible heat flux (calculated using SUEWS) [W m ⁻²]

continues on next page

Table 7.356 – continued from previous page

Column	Name	WriteOutOption	Description
15	QE	0,1,2	Latent heat flux (calculated using SUEWS) [W m ⁻²]
16	QHlumps	0,1,2	Sensible heat flux (calculated using SULWS) [W m ⁻²]
17	QElumps	0,1	Latent heat flux (calculated using LUMPS) [W m ⁻²]
18	QHresis	0,1	Sensible heat flux (calculated using EOWF 3) [W iii]
19	Rain	0,1,2	Rain [mm]
20	Irr	0,1,2	Irrigation [mm]
21	Evap	0,1,2	Evaporation [mm]
22	RO	0,1,2	Runoff [mm]
23	TotCh	0,1,2	
24	SurfCh		Change in surface and soil moisture stores [mm] Change in surface moisture store [mm]
25		0,1,2	
	State	0,1,2	Surface wetness state [mm]
26	NWtrState	0,1,2	Surface wetness state (for non-water surfaces) [mm]
27	Drainage	0,1,2	Drainage [mm]
28	SMD	0,1,2	Soil moisture deficit [mm]
29	FlowCh	0,1	Additional flow into water body [mm]
30	AddWater	0,1	Additional water flow received from other grids [mm]
31	ROSoil	0,1	Runoff to soil (sub-surface) [mm]
32	ROPipe	0,1	Runoff to pipes [mm]
33	ROImp	0,1	Above ground runoff over impervious surfaces [mm]
34	ROVeg	0,1	Above ground runoff over vegetated surfaces [mm]
35	ROWater	0,1	Runoff for water body [mm]
36	WUInt	0,1	Internal water use [mm]
37	WUEveTr	0,1	Water use for irrigation of evergreen trees [mm]
38	WUDecTr	0,1	Water use for irrigation of deciduous trees [mm]
39	WUGrass	0,1	Water use for irrigation of grass [mm]
40	SMDPaved	0,1	Soil moisture deficit for paved surface [mm]
41	SMDBldgs	0,1	Soil moisture deficit for building surface [mm]
42	SMDEveTr	0,1	Soil moisture deficit for evergreen surface [mm]
43	SMDDecTr	0,1	Soil moisture deficit for deciduous surface [mm]
44	SMDGrass	0,1	Soil moisture deficit for grass surface [mm]
45	SMDBSoil	0,1	Soil moisture deficit for bare soil surface [mm]
46	StPaved	0,1	Surface wetness state for paved surface [mm]
47	StBldgs	0,1	Surface wetness state for building surface [mm]
48	StEveTr	0,1	Surface wetness state for evergreen tree surface [mm]
49	StDecTr	0,1	Surface wetness state for deciduous tree surface [mm]
50	StGrass	0,1	Surface wetness state for grass surface [mm]
51	StBSoil	0,1	Surface wetness state for bare soil surface [mm]
52	StWater	0,1	Surface wetness state for water surface [mm]
53	Zenith	0,1,2	Solar zenith angle [°]
54	Azimuth	0,1,2	Solar azimuth angle [°]
55	AlbBulk	0,1,2	Bulk albedo [-]
56	Fcld	0,1,2	Cloud fraction [-]
57	LAI	0,1,2	Leaf area index [m 2 m ⁻²]
58	z0m	0,1	Roughness length for momentum [m]
59	zdm	0,1	Zero-plane displacement height [m]
60	ustar	0,1,2	Friction velocity [m s ⁻¹]
61	Lob	0,1,2	Obukhov length [m]
62	RA	0,1	Aerodynamic resistance [s m ⁻¹]
63	RS	0,1	Surface resistance [s m ⁻¹]

7.4. Output files 173

Table 7.356 – continued from previous page

Column	Name	WriteOutOption	Description
64	Fc	0,1,2	CO2 flux [umol m ⁻² s ⁻¹]
65	FcPhoto	0,1	CO2 flux from photosynthesis [umol m ⁻² s ⁻¹]
66	FcRespi	0,1	CO2 flux from respiration [umol m ⁻² s ⁻¹]
67	FcMetab	0,1	CO2 flux from metabolism [umol m ⁻² s ⁻¹]
68	FcTraff	0,1	CO2 flux from traffic [umol m ⁻² s ⁻¹]
69	FcBuild	0,1	CO2 flux from buildings [umol m ⁻² s ⁻¹]
70	FcPoint	0,1	CO2 flux from point source [umol m ⁻² s ⁻¹]
71	QNSnowFr	1	Net all-wave radiation for snow-free area [W m ⁻²]
72	QNSnow	1	Net all-wave radiation for snow area [W m ⁻²]
73	AlbSnow	1	Snow albedo [-]
74	QM	1	Snow-related heat exchange [W m ⁻²]
75	QMFreeze	1	Internal energy change [W m ⁻²]
76	QMRain	1	Heat released by rain on snow [W m ⁻²]
77	SWE	1	Snow water equivalent [mm]
78	MeltWater	1	Meltwater [mm]
79	MeltWStore	1	Meltwater store [mm]
80	SnowCh	1	Change in snow pack [mm]
81	SnowRPaved	1	Snow removed from paved surface [mm]
82	SnowRBldgs	1	Snow removed from building surface [mm]
83	Ts	0,1,2	Skin temperature [°C]
84	T2	0,1,2	Air temperature at 2 m agl [°C]
85	Q2	0,1,2	Air specific humidity at 2 m agl [g kg ⁻¹]
86	U10	0,1,2	Wind speed at 10 m ag1 [m s ⁻¹]
87	RH2	0,1,2	Relative humidity at 2 m agl [%]

SSss_DailyState.txt

Contains information about the state of the surface and soil and vegetation parameters at a time resolution of one day. One file is written for each grid so it may contain multiple years.

Column	Name	Description
1	Year	Year [YYYY]
2	DOY	Day of year [DOY]
3	Hour	Hour of the last timestep of a day [HH]
4	Min	Minute of the last timestep of a day [MM]
5	HDD1_h	Heating degree days [°C d]
6	HDD2_c	Cooling degree days [°C d]
7	HDD3_Tmean	Average daily air temperature in forcing data [°C]
8	HDD4_T5d	5-day running-mean air temperature in forcing data [°C]
9	P_day	Daily total precipitation [mm]
10	DaysSR	Days since rain [days]
11	GDD_EveTr	Growing degree days for evergreen tree [°C d]
12	GDD_DecTr	Growing degree days for deciduous tree [°C d]
13	GDD_Grass	Growing degree days for grass [°C d]
14	SDD_EveTr	Senescence degree days for evergreen tree [°C d]
15	SDD_DecTr	Senescence degree days for deciduous tree [°C d]
16	SDD_Grass	Senescence degree days for grass [°C d]
17	Tmin	Daily minimum temperature in forcing data [°C]

continues on next page

Table 7.357 – continued from previous page

Column	Name	Description
18	Tmax	Daily maximum temperature in forcing data [°C]
19	DLHrs	Day length [h]
20	LAI_EveTr	Leaf area index of evergreen trees [m ⁻² m ⁻²]
21	LAI_DecTr	Leaf area index of deciduous trees [m ⁻² m ⁻²]
22	LAI_Grass	Leaf area index of grass [m ⁻² m ⁻²]
23	DecidCap	Moisture storage capacity of deciduous trees [mm]
24	Porosity	Porosity of deciduous trees [-]
25	AlbEveTr	Albedo of evergreen trees [-]
26	AlbDecTr	Albedo of deciduous trees [-]
27	AlbGrass	Albedo of grass [-]
28	WU_EveTr1	Total water use for evergreen trees [mm]
29	WU_EveTr2	Automatic water use for evergreen trees [mm]
30	WU_EveTr3	Manual water use for evergreen trees [mm]
31	WU_DecTr1	Total water use for deciduous trees [mm]
32	WU_DecTr2	Automatic water use for deciduous trees [mm]
33	WU_DecTr3	Manual water use for deciduous trees [mm]
34	WU_Grass1	Total water use for grass [mm]
35	WU_Grass2	Automatic water use for grass [mm]
36	WU_Grass3	Manual water use for grass [mm]
37	deltaLAI	Change in leaf area index (normalised 0-1) [-]
38	LAIlumps	Leaf area index used in LUMPS (normalised 0-1) [-]
39	AlbSnow	Snow albedo [-]
40	DensSnow_Paved	Snow density - paved surface [kg m ⁻³]
41	DensSnow_Bldgs	Snow density - building surface [kg m ⁻³]
42	DensSnow_EveTr	Snow density - evergreen surface [kg m ⁻³]
43	DensSnow_DecTr	Snow density - deciduous surface [kg m ⁻³]
44	DensSnow_Grass	Snow density - grass surface [kg m ⁻³]
45	DensSnow_BSoil	Snow density - bare soil surface [kg m ⁻³]
46	DensSnow_Water	Snow density - water surface [kg m ⁻³]
47	a1	OHM cofficient a1 - [-]
48	a2	OHM cofficient a2 [W m ⁻² h ⁻¹]
49	a3	OHM cofficient a3 - [W m ⁻²]

InitialConditionsSSss_YYYY.nml

At the end of the model run (or the end of each year in the model run) a new InitialConditions file is written out (to the input folder) for each grid, see *Initial Conditions file*

SSss_YYYY_snow_TT.txt

SUEWS produces a separate output file for snow (when SnowUse = 1 in RunControl.nml) with details for each surface type.

File format of SSss_YYYY_snow_TT.txt

Column	Name	Description
1	iy	Year [YYYY]
2	id	Day of year [DOY]

continues on next page

7.4. Output files

Table 7.358 – continued from previous page

Calumn		e /.358 – continued from previous page
Column	Name	Description
3	it	Hour [H]
4	imin	Minute [M]
5	dectime	Decimal time [-]
6	SWE_Paved	Snow water equivalent – paved surface [mm]
7	SWE_Bldgs	Snow water equivalent – building surface [mm]
8	SWE_EveTr	Snow water equivalent – evergreen surface [mm]
9	SWE_DecTr	Snow water equivalent – deciduous surface [mm]
10	SWE_Grass	Snow water equivalent – grass surface [mm]
11	SWE_BSoil	Snow water equivalent – bare soil surface [mm]
12	SWE_Water	Snow water equivalent – water surface [mm]
13	Mw_Paved	Meltwater – paved surface [mm h ⁻¹]
14	Mw_Bldgs	Meltwater – building surface [mm h ⁻¹]
15	Mw_EveTr	Meltwater – evergreen surface [mm h ⁻¹]
16	Mw_DecTr	Meltwater – deciduous surface [mm h ⁻¹]
17	Mw_Grass	Meltwater – grass surface [mm h ⁻¹ 1]
18	Mw_BSoil	Meltwater – bare soil surface [mm h ⁻¹]
19	Mw_Water	Meltwater – water surface [mm h ⁻¹]
20	Qm_Paved	Snowmelt-related heat – paved surface [W m ⁻²]
21	Qm_Bldgs	Snowmelt-related heat – building surface [W m ⁻²]
22	Qm_EveTr	Snowmelt-related heat – evergreen surface [W m ⁻²]
23	Qm_DecTr	Snowmelt-related heat – deciduous surface [W m ⁻²]
24	Qm_Grass	Snowmelt-related heat – grass surface [W m ⁻²]
25	Qm_BSoil	Snowmelt-related heat – bare soil surface [W m ⁻²]
26	Qm_Water	Snowmelt-related heat – water surface [W m ⁻²]
27	Qa_Paved	Advective heat – paved surface [W m ⁻²]
28	Qa_Bldgs	Advective heat – building surface [W m ⁻²]
29	Qa_EveTr	Advective heat – evergreen surface [W m ⁻²]
30	Qa_DecTr	Advective heat – deciduous surface [W m ⁻²]
31	Qa_Grass	Advective heat – grass surface [W m ⁻²]
32	Qa_BSoil	Advective heat – bare soil surface [W m ⁻²]
33	Qa_Water	Advective heat – water surface [W m ⁻²]
34	QmFr_Paved	Heat related to freezing of surface store – paved surface [W m ⁻²]
35	QmFr_Bldgs	Heat related to freezing of surface store – building surface [W m ⁻²]
36	QmFr_EveTr	Heat related to freezing of surface store – evergreen surface [W m ⁻²]
37	QmFr_DecTr	Heat related to freezing of surface store – deciduous surface [W m ⁻²]
38	QmFr_Grass	Heat related to freezing of surface store – grass surface [W m ⁻²]
39	QmFr_BSoil	Heat related to freezing of surface store – bare soil surface [W m ⁻²]
40	QmFr_Water	Heat related to freezing of surface store – water [W m ⁻²]
41	fr_Paved	Fraction of snow – paved surface [-]
42	fr_Bldgs	Fraction of snow – building surface [-]
43	fr_EveTr	Fraction of snow – evergreen surface [-]
44	fr_DecTr	Fraction of snow – deciduous surface [-]
45	fr_Grass	Fraction of snow – grass surface [-]
46	Fr_BSoil	Fraction of snow – bare soil surface [-]
47	RainSn_Paved	Rain on snow – paved surface [mm]
48	RainSn_Bldgs	Rain on snow – building surface [mm]
49	RainSn_EveTr	Rain on snow – evergreen surface [mm]
50	RainSn_DecTr	Rain on snow – deciduous surface [mm]
51	RainSn_Grass	Rain on snow – grass surface [mm]
	1	continues on next nage

Table 7.358 – continued from previous page

Column	Name	Description
52	RainSn_BSoil	Rain on snow – bare soil surface [mm]
53	RainSn_Water	Rain on snow – water surface [mm]
54	qn_PavedSnow	Net all-wave radiation – paved surface [W m ⁻²]
55	qn_BldgsSnow	Net all-wave radiation – building surface [W m ⁻²]
56	qn_EveTrSnow	Net all-wave radiation – evergreen surface [W m ⁻²]
57	qn_DecTrSnow	Net all-wave radiation – deciduous surface [W m ⁻²]
58	qn_GrassSnow	Net all-wave radiation – grass surface [W m ⁻²]
59	qn_BSoilSnow	Net all-wave radiation – bare soil surface [W m ⁻²]
60	qn_WaterSnow	Net all-wave radiation – water surface [W m ⁻²]
61	kup_PavedSnow	Reflected shortwave radiation – paved surface [W m ⁻²]
62	kup_BldgsSnow	Reflected shortwave radiation – building surface [W m ⁻²]
63	kup_EveTrSnow	Reflected shortwave radiation – evergreen surface [W m ⁻²]
64	kup_DecTrSnow	Reflected shortwave radiation – deciduous surface [W m ⁻²]
65	kup_GrassSnow	Reflected shortwave radiation – grass surface [W m ⁻²]
66	kup_BSoilSnow	Reflected shortwave radiation – bare soil surface [W m ⁻²]
67	kup_WaterSnow	Reflected shortwave radiation – water surface [W m ⁻²]
68	frMelt_Paved	Amount of freezing melt water – paved surface [mm]
69	frMelt_Bldgs	Amount of freezing melt water – building surface [mm]
70	frMelt_EveTr	Amount of freezing melt water – evergreen surface [mm]
71	frMelt_DecTr	Amount of freezing melt water – deciduous surface [mm]
72	frMelt_Grass	Amount of freezing melt water – grass surface [mm]
73	frMelt_BSoil	Amount of freezing melt water – bare soil surface [mm]
74	frMelt_Water	Amount of freezing melt water – water surface [mm]
75	MwStore_Paved	Melt water store – paved surface [mm]
76	MwStore_Bldgs	Melt water store – building surface [mm]
77	MwStore_EveTr	Melt water store – evergreen surface [mm]
78	MwStore_DecTr	Melt water store – deciduous surface [mm]
79	MwStore_Grass	Melt water store – grass surface [mm]
80	MwStore_BSoil	Melt water store – bare soil surface [mm]
81	MwStore_Water	Melt water store – water surface [mm]
82	DensSnow_Paved	Snow density – paved surface [kg m ⁻³]
83	DensSnow_Bldgs	Snow density – building surface [kg m ⁻³]
84	DensSnow_EveTr	Snow density – evergreen surface [kg m ⁻³]
85	DensSnow_DecTr	Snow density – deciduous surface [kg m ⁻³]
86	DensSnow_Grass	Snow density – grass surface [kg m ⁻³]
87	DensSnow_BSoil	Snow density – bare soil surface [kg m ⁻³]
88	DensSnow_Water	Snow density – water surface [kg m ⁻³]
89	Sd_Paved	Snow depth – paved surface [mm]
90	Sd_Bldgs	Snow depth – building surface [mm]
91	Sd_EveTr	Snow depth – evergreen surface [mm]
92	Sd_DecTr	Snow depth – deciduous surface [mm]
93	Sd_Grass	Snow depth – grass surface [mm]
94	Sd_BSoil	Snow depth – bare soil surface [mm]
95	Sd_Water	Snow depth – water surface [mm]
96	Tsnow_Paved	Snow surface temperature – paved surface [°C]
97	Tsnow_Bldgs	Snow surface temperature – building surface [°C]
98	Tsnow_EveTr	Snow surface temperature – evergreen surface [°C]
99	Tsnow_DecTr	Snow surface temperature – deciduous surface [°C]
100	Tsnow_Grass	Snow surface temperature – grass surface [°C]

continues on next page

7.4. Output files

Table 7.358 – continued from previous page

Column	Name	Description
101	Tsnow_BSoil	Snow surface temperature – bare soil surface [°C]
102	Tsnow_Water	Snow surface temperature – water surface [°C]

SSss_YYYY_RSL_TT.txt

SUEWS produces a separate output file for wind, temperature and humidity profiles in the roughness sublayer at 30 levels (see *Wind, Temperature and Humidity Profiles in the Roughness Sublayer* level details).

File format of SSss_YYYY_RSL_TT.txt:

Column	Name	Description
1	Year	Year [YYYY]
2	DOY	Day of year [DOY]
3	Hour	Hour [H]
4	Min	Minute [M]
5	Dectime	Decimal time [-]
6	z_1	Height at level 1 [m]
7	z_2	Height at level 2 [m]
8	z_3	Height at level 3 [m]
9	z_4	Height at level 4 [m]
10	z_5	Height at level 5 [m]
11	z_6	Height at level 6 [m]
12	z_7	Height at level 7 [m]
13	z_8	Height at level 8 [m]
14	z_9	Height at level 9 [m]
15	z_10	Height at level 10 [m]
16	z_11	Height at level 11 [m]
17	z_12	Height at level 12 [m]
18	z_13	Height at level 13 [m]
19	z_14	Height at level 14 [m]
20	z_15	Height at level 15 [m]
21	z_16	Height at level 16 [m]
22	z_17	Height at level 17 [m]
23	z_18	Height at level 18 [m]
24	z_19	Height at level 19 [m]
25	z_20	Height at level 20 [m]
26	z_21	Height at level 21 [m]
27	z_22	Height at level 22 [m]
28	z_23	Height at level 23 [m]
29	z_24	Height at level 24 [m]
30	z_25	Height at level 25 [m]
31	z_26	Height at level 26 [m]
32	z_27	Height at level 27 [m]
33	z_28	Height at level 28 [m]
34	z_29	Height at level 29 [m]
35	z_30	Height at level 30 [m]
36	U_1	Wind speed at level 1 [m s ⁻¹]
37	U_2	Wind speed at level 2 [m s ⁻¹]
38	U_3	Wind speed at level 3 [m s ⁻¹]

continues on next page

Table 7.359 – continued from previous page

Column	Name	Description
39	U 4	Wind speed at level 4 [m s ⁻¹]
40	U 5	Wind speed at level 5 [m s ⁻¹]
41	U_6	Wind speed at level 6 [m s ⁻¹]
42	U_7	Wind speed at level 7 [m s ⁻¹]
43	U_8	Wind speed at level 8 [m s ⁻¹]
44	U_9	Wind speed at level 9 [m s ⁻¹]
45	U_10	Wind speed at level 10 [m s ⁻¹]
46	U_11	Wind speed at level 11 [m s ⁻¹]
47	U_12	Wind speed at level 12 [m s ⁻¹]
48	U_13	Wind speed at level 12 [m s ⁻¹]
49	U_14	Wind speed at level 14 [m s ⁻¹]
50	U_15	Wind speed at level 15 [m s ⁻¹]
51	U_16	Wind speed at level 16 [m s ⁻¹]
52	U_17	Wind speed at level 17 [m s ⁻¹]
53	U_18	Wind speed at level 18 [m s ⁻¹]
54	U_19	Wind speed at level 19 [m s ⁻¹]
55	U_20	Wind speed at level 20 [m s ⁻¹]
56	U_21	Wind speed at level 21 [m s ⁻¹]
57	U_22	Wind speed at level 22 [m s ⁻¹]
58	U_23	Wind speed at level 23 [m s ⁻¹]
59	U_24	Wind speed at level 24 [m s ⁻¹]
60	U_25	Wind speed at level 25 [m s ⁻¹]
61	U_26	Wind speed at level 26 [m s ⁻¹]
62	U_27	Wind speed at level 27 [m s ⁻¹]
63	U_28	Wind speed at level 28 [m s ⁻¹]
64	U 29	Wind speed at level 29 [m s ⁻¹]
65	U_30	Wind speed at level 30 [m s ⁻¹]
66	T_1	Air temperature at level 1 [°C]
67	T 2	Air temperature at level 2 [°C]
68	T 3	Air temperature at level 3 [°C]
69	T 4	Air temperature at level 4 [°C]
70	T_5	Air temperature at level 5 [°C]
71	T_6	Air temperature at level 6 [°C]
72	T_7	Air temperature at level 7 [°C]
73	T_8	Air temperature at level 8 [°C]
74	T_9	Air temperature at level 9 [°C]
75	T_10	Air temperature at level 10 [°C]
76	T_11	Air temperature at level 11 [°C]
77	T_12	Air temperature at level 12 [°C]
78	T_13	Air temperature at level 13 [°C]
79	T_14	Air temperature at level 14 [°C]
80	T_15	Air temperature at level 15 [°C]
81	T_16	Air temperature at level 16 [°C]
82	T_17	Air temperature at level 17 [°C]
83	T_18	Air temperature at level 18 [°C]
84	T_19	Air temperature at level 19 [°C]
85	T_20	Air temperature at level 20 [°C]
86	T_21	Air temperature at level 21 [°C]
87	T_22	Air temperature at level 22 [°C]
		continues on next page

continues on next page

7.4. Output files 179

Table 7.359 – continued from previous page

Column	Name	Description
88	T_23	Air temperature at level 23 [°C]
89	T_24	Air temperature at level 24 [°C]
90	T_25	Air temperature at level 25 [°C]
91	T_26	Air temperature at level 26 [°C]
92	T_27	Air temperature at level 27 [°C]
93	T_28	Air temperature at level 28 [°C]
94	T_29	Air temperature at level 29 [°C]
95	T_30	Air temperature at level 30 [°C]
96	q_1	Specific humidity at level 1 [g kg ⁻¹]
97	q_2	Specific humidity at level 2 [g kg ⁻¹]
98	q_3	Specific humidity at level 3 [g kg ⁻¹]
99	q_4	Specific humidity at level 4 [g kg ⁻¹]
100	q_5	Specific humidity at level 5 [g kg ⁻¹]
101	q_6	Specific humidity at level 6 [g kg ⁻¹]
102	q_7	Specific humidity at level 7 [g kg ⁻¹]
103	q_8	Specific humidity at level 8 [g kg ⁻¹]
104	q_9	Specific humidity at level 9 [g kg ⁻¹]
105	q_10	Specific humidity at level 10 [g kg ⁻¹]
106	q_11	Specific humidity at level 11 [g kg ⁻¹]
107	q_12	Specific humidity at level 12 [g kg ⁻¹]
108	q_13	Specific humidity at level 13 [g kg ⁻¹]
109	q_14	Specific humidity at level 14 [g kg ⁻¹]
110	q_15	Specific humidity at level 15 [g kg ⁻¹]
111	q_16	Specific humidity at level 16 [g kg ⁻¹]
112	q_17	Specific humidity at level 17 [g kg ⁻¹]
113	q_18	Specific humidity at level 18 [g kg ⁻¹]
114	q_19	Specific humidity at level 19 [g kg ⁻¹]
115	q_20	Specific humidity at level 20 [g kg ⁻¹]
116	q_21	Specific humidity at level 21 [g kg ⁻¹]
117	q_22	Specific humidity at level 22 [g kg ⁻¹]
118	q_23	Specific humidity at level 23 [g kg ⁻¹]
119	q_24	Specific humidity at level 24 [g kg ⁻¹]
120	q_25	Specific humidity at level 25 [g kg ⁻¹]
121	q_26	Specific humidity at level 26 [g kg ⁻¹]
122	q_27	Specific humidity at level 27 [g kg ⁻¹]
123	q_28	Specific humidity at level 28 [g kg ⁻¹]
124	q_29	Specific humidity at level 29 [g kg ⁻¹]
125	q_30	Specific humidity at level 30 [g kg ⁻¹]

SSss_YYYY_BL_TT.txt

Meteorological variables modelled by CBL portion of the model are output in to this file created for each day with time step (see *CBL input files*).

Column	Name	Description	Units
1	iy	Year [YYYY]	
2	id	Day of year [DoY]	
3	it	Hour [H]	
4	imin	Minute [M]	
5	dectime	Decimal time [-]	
6	zi	Convectibe boundary layer height	m
7	Theta	Potential temperature in the inertial sublayer	K
8	Q	Specific humidity in the inertial sublayer	g kg ⁻¹
9	theta+	Potential temperature just above the CBL	K
10	q+	Specific humidity just above the CBL	g kg ⁻¹
11	Temp_C	Air temperature	°C
12	RH	Relative humidity	%
13	QH_use	Sensible heat flux used for calculation	W m ⁻²
14	QE_use	Latent heat flux used for calculation	W m ⁻²
15	Press_hPa	Pressure used for calculation	hPa
16	avu1	Wind speed used for calculation	m s ⁻¹
17	ustar	Friction velocity used for calculation	m s ⁻¹
18	avdens	Air density used for calculation	kg m ⁻³
19	lv_J_kg	Latent heat of vaporization used for calculation	J kg ⁻¹
20	avcp	Specific heat capacity used for calculation	J kg ⁻¹ K ⁻¹
21	gamt	Vertical gradient of potential temperature	K m ⁻¹
22	gamq	Vertical gradient of specific humidity	kg kg ⁻¹ m ⁻¹

SSss_YYYY_ESTM_TT.txt

If the ESTM model option is run, the following output file is created.

Note: First time steps of storage output could give NaN values during the initial converging phase.

ESTM output file format

Column	Name	Description	Units
1	iy	Year	
2	id	Day of year	
3	it	Hour	
4	imin	Minute	
5	dectime	Decimal time	
6	QSnet	Net storage heat flux (QSwall+QSground+QS)	W m ⁻²
7	QSair	Storage heat flux into air	W m ⁻²
8	QSwall	Storage heat flux into wall	W m ⁻²
9	QSroof	Storage heat flux into roof	W m ⁻²
10	QSground	Storage heat flux into ground	W m ⁻²
11	QSibld	Storage heat flux into internal elements in buildling	W m ⁻²

continues on next page

7.4. Output files

Table 7.360 – continued from previous page

Column	Name	Description	Units
12	Twall1	Temperature in the first layer of wall (outer-most)	K
13	Twall2	Temperature in the first layer of wall	K
14	Twall3	Temperature in the first layer of wall	K
15	Twall4	Temperature in the first layer of wall	K
16	Twall5	Temperature in the first layer of wall (inner-most)	K
17	Troof1	Temperature in the first layer of roof (outer-most)	K
18	Troof2	Temperature in the first layer of roof	K
19	Troof3	Temperature in the first layer of roof	K
20	Troof4	Temperature in the first layer of roof	K
21	Troof5	Temperature in the first layer of ground (inner-most)	K
22	Tground1	Temperature in the first layer of ground (outer-most)	K
23	Tground2	Temperature in the first layer of ground	K
24	Tground3	Temperature in the first layer of ground	K
25	Tground4	Temperature in the first layer of ground	K
26	Tground5	Temperature in the first layer of ground (inner-most)	K
27	Tibld1	Temperature in the first layer of internal elements	K
28	Tibld2	Temperature in the first layer of internal elements	K
29	Tibld3	Temperature in the first layer of internal elements	K
30	Tibld4	Temperature in the first layer of internal elements	K
31	Tibld5	Temperature in the first layer of internal elements	K
32	Tabld	Air temperature in buildings	K

SSss_YYYY_SPARTACUS_TT.txt

If the SPARTACUS model option is run, the following output file is created.

SPARTACUS output file format

Column	Name	Description
1	Year	Year [YYYY]
2	DOY	Day of year [DOY]
3	Hour	Hour [H]
4	Min	Minute [M]
5	Dectime	Decimal time [-]
6	alb	Albedo at top-of-canopy. Average of diffuse and direct albedos weighted by the amount of diffuse and direct
7	emis	Emissivity at top-of-canopy
8	Lemission	Longwave upward emission at top-of-canopy [Wm-2]
9	Lup	Longwave upward (emission+reflected) at top-of-canopy [Wm-2]
10	Kup	Shortwave upward (reflected) at top-of-canopy [Wm-2]
11	Qn	Net all-wave radiation at top-of-canopy [Wm-2]
12	LCAAbs1	Longwave absorption rate in clear-air part of layer 1 [Wm-2]
13	LCAAbs2	Longwave absorption rate in clear-air part of layer 2 [Wm-2]
14	LCAAbs3	Longwave absorption rate in clear-air part of layer 3 [Wm-2]
15	LCAAbs4	Longwave absorption rate in clear-air part of layer 4 [Wm-2]
16	LCAAbs5	Longwave absorption rate in clear-air part of layer 5 [Wm-2]
17	LCAAbs6	Longwave absorption rate in clear-air part of layer 6 [Wm-2]
18	LCAAbs7	Longwave absorption rate in clear-air part of layer 7 [Wm-2]
19	LCAAbs8	Longwave absorption rate in clear-air part of layer 8 [Wm-2]
20	LCAAbs9	Longwave absorption rate in clear-air part of layer 9 [Wm-2]

Table 7.361 – continued from previous page

Column	Name	Description
21	LCAAbs10	Longwave absorption rate in clear-air part of layer 10 [Wm-2]
22	LCAAbs11	Longwave absorption rate in clear-air part of layer 11 [Wm-2]
23	LCAAbs12	Longwave absorption rate in clear-air part of layer 12 [Wm-2]
24	LCAAbs13	Longwave absorption rate in clear-air part of layer 13 [Wm-2]
25	LCAAbs14	Longwave absorption rate in clear-air part of layer 14 [Wm-2]
26	LCAAbs15	Longwave absorption rate in clear-air part of layer 15 [Wm-2]
27	LWallNet1	Net longwave flux into walls in layer 1 [Wm-2]
28	LWallNet2	Net longwave flux into walls in layer 2 [Wm-2]
29	LWallNet3	Net longwave flux into walls in layer 3 [Wm-2]
30	LWallNet4	Net longwave flux into walls in layer 4 [Wm-2]
31	LWallNet5	Net longwave flux into walls in layer 5 [Wm-2]
32	LWallNet6	Net longwave flux into walls in layer 6 [Wm-2]
33	LWallNet7	Net longwave flux into walls in layer 7 [Wm-2]
34	LWallNet8	Net longwave flux into walls in layer 8 [Wm-2]
35	LWallNet9	Net longwave flux into walls in layer 9 [Wm-2]
36	LWallNet10	Net longwave flux into walls in layer 10 [Wm-2]
37	LWallNet11	Net longwave flux into walls in layer 11 [Wm-2]
38	LWallNet12	Net longwave flux into walls in layer 12 [Wm-2]
39	LWallNet13	Net longwave flux into walls in layer 13 [Wm-2]
40	LWallNet14	Net longwave flux into walls in layer 14 [Wm-2]
41	LWallNet15	Net longwave flux into walls in layer 15 [Wm-2]
42	LRfNet1	Net longwave flux into roofs in layer 1 [Wm-2]
43	LRfNet2	Net longwave flux into roofs in layer 2 [Wm-2]
44	LRfNet3	Net longwave flux into roofs in layer 3 [Wm-2]
45	LRfNet4	Net longwave flux into roofs in layer 4 [Wm-2]
46	LRfNet5	Net longwave flux into roofs in layer 5 [Wm-2]
47	LRfNet6	Net longwave flux into roofs in layer 6 [Wm-2]
48	LRfNet7	Net longwave flux into roofs in layer 7 [Wm-2]
49	LRfNet8	Net longwave flux into roofs in layer 8 [Wm-2]
50	LRfNet9	Net longwave flux into roofs in layer 9 [Wm-2]
51	LRfNet10	Net longwave flux into roofs in layer 10 [Wm-2]
52	LRfNet11	Net longwave flux into roofs in layer 11 [Wm-2]
53	LRfNet12	Net longwave flux into roofs in layer 12 [Wm-2]
54	LRfNet13	Net longwave flux into roofs in layer 13 [Wm-2]
55	LRfNet14	Net longwave flux into roofs in layer 14 [Wm-2]
56	LRfNet15	Net longwave flux into roofs in layer 15 [Wm-2]
57	LRfIn1	Longwave flux into roofs in layer 1 [Wm-2]
58	LRfIn2	Longwave flux into roofs in layer 2 [Wm-2]
59	LRfIn3	Longwave flux into roofs in layer 3 [Wm-2]
60	LRfIn4	Longwave flux into roofs in layer 4 [Wm-2]
61	LRfIn5	Longwave flux into roofs in layer 5 [Wm-2]
62	LRfIn6 LRfIn7	Longwave flux into roofs in layer 6 [Wm-2]
63		Longwave flux into roofs in layer 7 [Wm-2]
64 65	LRfIn8	Longwave flux into roofs in layer 8 [Wm-2] Longwave flux into roofs in layer 9 [Wm-2]
66	LRfIn9	
67	LRfIn10 LRfIn11	Longwave flux into roofs in layer 10 [Wm-2] Longwave flux into roofs in layer 11 [Wm-2]
68	LRIIII1 LRfIn12	Longwave flux into roofs in layer 11 [Wm-2] Longwave flux into roofs in layer 12 [Wm-2]
69	LRIIn12 LRfIn13	Longwave flux into roofs in layer 12 [wm-2] Longwave flux into roofs in layer 13 [Wm-2]
Už	LKIIII3	Longwave nun into 10018 in layer 13 [WIII-2]

7.4. Output files 183

Table 7.361 – continued from previous page

Column	Name	Description
70	LRfIn14	Longwave flux into roofs in layer 14 [Wm-2]
71	LRfIn15	Longwave flux into roofs in layer 15 [Wm-2]
72	LTopNet	Top-of-canopy net longwave flux [Wm-2]
73	LGrndNet	Net longwave flux into the ground [Wm-2]
74	LTopDn	Top-of-canopy downwelling longwave flux [Wm-2]
75	KCAAbs1	Shortwave absorption rate in clear-air part of layer 1 [Wm-2]
76	KCAAbs2	Shortwave absorption rate in clear-air part of layer 2 [Wm-2]
77	KCAAbs3	Shortwave absorption rate in clear-air part of layer 3 [Wm-2]
78	KCAAbs4	Shortwave absorption rate in clear-air part of layer 4 [Wm-2]
79	KCAAbs5	Shortwave absorption rate in clear-air part of layer 5 [Wm-2]
80	KCAAbs6	Shortwave absorption rate in clear-air part of layer 6 [Wm-2]
81	KCAAbs7	Shortwave absorption rate in clear-air part of layer 7 [Wm-2]
82	KCAAbs8	Shortwave absorption rate in clear-air part of layer 8 [Wm-2]
83	KCAAbs9	Shortwave absorption rate in clear-air part of layer 9 [Wm-2]
84	KCAAbs10	Shortwave absorption rate in clear-air part of layer 10 [Wm-2]
85	KCAAbs11	Shortwave absorption rate in clear-air part of layer 11 [Wm-2]
86	KCAAbs12	Shortwave absorption rate in clear-air part of layer 12 [Wm-2]
87	KCAAbs13	Shortwave absorption rate in clear-air part of layer 13 [Wm-2]
88	KCAAbs14	Shortwave absorption rate in clear-air part of layer 14 [Wm-2]
89	KCAAbs15	Shortwave absorption rate in clear-air part of layer 15 [Wm-2]
90	KWallNet1	Net shortwave flux into walls in layer 1 [Wm-2]
91	KWallNet2	Net shortwave flux into walls in layer 2 [Wm-2]
92	KWallNet3	Net shortwave flux into walls in layer 3 [Wm-2]
93	KWallNet4	Net shortwave flux into walls in layer 4 [Wm-2]
94	KWallNet5	Net shortwave flux into walls in layer 5 [Wm-2]
95	KWallNet6	Net shortwave flux into walls in layer 6 [Wm-2]
96	KWallNet7	Net shortwave flux into walls in layer 7 [Wm-2]
97	KWallNet8	Net shortwave flux into walls in layer 8 [Wm-2]
98	KWallNet9	Net shortwave flux into walls in layer 9 [Wm-2]
99	KWallNet10	Net shortwave flux into walls in layer 10 [Wm-2]
100	KWallNet11	Net shortwave flux into walls in layer 11 [Wm-2]
101	KWallNet12	Net shortwave flux into walls in layer 12 [Wm-2]
102	KWallNet13	Net shortwave flux into walls in layer 13 [Wm-2]
103	KWallNet14	Net shortwave flux into walls in layer 14 [Wm-2]
104	KWallNet15	Net shortwaye flux into walls in layer 15 [Wm-2]
105	KRfNet1	Net shortwaye flux into roofs in layer 1 [Wm-2]
106	KRfNet2	Net shortwave flux into roofs in layer 2 [Wm-2]
107	KRfNet3 KRfNet4	Net shortwave flux into roofs in layer 3 [Wm-2]
108 109	KRINet4 KRfNet5	Net shortwave flux into roofs in layer 4 [Wm-2] Net shortwave flux into roofs in layer 5 [Wm-2]
110	KRINet5 KRfNet6	Net shortwave flux into roofs in layer 6 [Wm-2]
110	KRINeto KRfNet7	Net shortwave flux into roofs in layer 7 [Wm-2]
112	KRINet/ KRfNet8	Net shortwave flux into roofs in layer 8 [Wm-2]
113	KRINEI8 KRfNet9	Net shortwave flux into roofs in layer 9 [Wm-2]
114	KRINEI9 KRfNet10	Net shortwave flux into roofs in layer 10 [Wm-2]
115	KRINEII0 KRfNet11	Net shortwave flux into roofs in layer 11 [Wm-2]
116	KRINet11 KRfNet12	Net shortwave flux into roofs in layer 12 [Wm-2]
117	KRINet12 KRfNet13	Net shortwave flux into roofs in layer 12 [Wm-2]
117	KRINet13 KRfNet14	Net shortwave flux into roofs in layer 14 [Wm-2]
110	MINITAGET	1 Not shortware has hite tools in layer 17 [Win-2]

Table 7.361 – continued from previous page

Column	Name	Description
119	KRfNet15	Net shortwave flux into roofs in layer 15 [Wm-2]
120	KRfIn1	Shortwave flux into roofs in layer 1 [Wm-2]
121	KRfIn2	Shortwave flux into roofs in layer 2 [Wm-2]
122	KRfIn3	Shortwave flux into roofs in layer 3 [Wm-2]
123	KRfIn4	Shortwave flux into roofs in layer 4 [Wm-2]
124	KRfIn5	Shortwave flux into roofs in layer 5 [Wm-2]
125	KRfIn6	Shortwave flux into roofs in layer 6 [Wm-2]
126	KRfIn7	Shortwave flux into roofs in layer 7 [Wm-2]
127	KRfIn8	Shortwave flux into roofs in layer 8 [Wm-2]
128	KRfIn9	Shortwave flux into roofs in layer 9 [Wm-2]
129	KRfIn10	Shortwave flux into roofs in layer 10 [Wm-2]
130	KRfIn11	Shortwave flux into roofs in layer 11 [Wm-2]
131	KRfIn12	Shortwave flux into roofs in layer 12 [Wm-2]
132	KRfIn13	Shortwave flux into roofs in layer 13 [Wm-2]
133	KRfIn14	Shortwave flux into roofs in layer 14 [Wm-2]
134	KRfIn15	Shortwave flux into roofs in layer 15 [Wm-2]
135	KTopDnDir	Direct shortwave flux into roofs [Wm-2]
136	KTopNet	Top-of-canopy net shortwave flux [Wm-2]
137	KGrndDnDir	Direct downwelling shortwave flux into the ground [Wm-2]
138	KGrndNet	Net shortwave flux into the ground [Wm-2]

7.5 Troubleshooting

7.5.1 How to report an issue of this manual?

Please submit your issue via our GitHub page.

7.5.2 How to join your email-list?

Please join our email-list here.

7.5.3 How to create a directory?

Please search the web using this phrase if you do not know how to create a folder or directory

7.5.4 How to unzip a file

Please search the web using this phrase if you do not know how to unzip a file

7.5.5 A text editor

A program to edit plain text files. If you search on the web using the phrase 'text editor' you will find numerous programs. These include for example, NotePad, EditPad, Text Pad etc

7.5.6 Command prompt

From Start select run –type cmd – this will open a window. Change directory to the location of where you stored your files. The following website may be helpful if you do not know what a command prompt is: http://dosprompt.info/

7.5.7 Day of year [DOY]

January 1st is day 1, February 1st is day 32. If you search on the web using the phrase 'day of year calendar' you will find tables that allow rapid conversions. Remember that after February 28th DOY will be different between leap years and non-leap years.

7.5.8 ESTM output

First time steps of storage output could give NaN values during the initial converging phase.

7.5.9 First things to Check if the program seems to have problems

- Check the problems.txt file.
- Check file options in RunControl.nml.
- Look in the output directory for the SS_FileChoices.txt. This allows you to check all options that were used in the run. You may want to compare it with the original version supplied with the model.
- Note there can not be missing time steps in the data. If you need help with this you may want to checkout `UMEP`_

A pop-up saying "file path not found"

This means the program cannot find the file paths defined in RunControl.nml file. Possible solutions:

- Check that you have created the folder that you specified in RunControl.nml.
- Check does the output directory exist?
- · Check that you have a single or double quotes around the FileInputPath, FileOutputPath and FileCode

===="%sat_vap_press.f temp=0.0000 pressure dectime"==== Temperature is zero in the calculation of water vapour pressure parameterization.

- You don't need to worry if the temperature should be (is) 0°C.
- If it should not be 0°C this suggests that there is a problem with the data.

%T changed to fit limits

• [TL =0.1]/ [TL =39.9] You may want to change the coefficients for surface resistance. If you have data from these temperatures, we would happily determine them.

%Iteration loop stopped for too stable conditions.

• [zL]/[USTAR] This warning indicates that the atmospheric stability gets above 2. In these conditions MO theory is not necessarily valid. The iteration loop to calculate the Obukhov length and friction velocity is stopped so that stability does not get too high values. This is something you do not need to worry as it does not mean wrong input data.

"Reference to undefined variable, array element or function result"

• Parameter(s) missing from input files.

See also the error messages provided in problems.txt and warnings.txt

7.6 SUEWS-related Software

7.6.1 SuPy: SUEWS that speaks Python

· What is SuPy?

SuPy is a Python-enhanced urban climate model with SUEWS as its computation core.

The scientific rigour in SuPy results is thus guaranteed by SUEWS (see *SUEWS publications* and *Parameterisations* and *sub-models within SUEWS*).

Meanwhile, the data analysis ability of SuPy is greatly enhanced by the Python-based SciPy Stack, notably numpy and pandas.

More details are described in our SuPy paper.

How to get SuPy?

SuPy is available on all major platforms (macOS, Windows, Linux) for Python 3.7+ (64-bit only) via PyPI:

```
python3 -m pip install supy --upgrade
```

- How to use SuPy?
 - Please follow Quickstart of SuPy and other tutorials.
 - Please see API reference for details.
 - Please see *FAQ* if any issue.
- How to contribute to SuPy?
 - Add your development via Pull Request

- Report issues via the GitHub page.
- Cite our SuPy paper.
- Provide suggestions and feedback.

Tutorials

To familiarise users with SuPy urban climate modelling and to demonstrate the functionality of SuPy, we provide the following tutorials in Jupyter notebooks:

Quickstart of SuPy

This quickstart demonstrates the essential and simplest workflow of supy in SUEWS simulation:

- 1. load input files
- 2. run simulation
- 3. examine results

More advanced use of supy are available in the tutorials

Before we start, we need to load the following necessary packages.

```
import matplotlib.pyplot as plt
import supy as sp
import pandas as pd
import numpy as np
from pathlib import Path

//matplotlib inline

/opt/homebrew/Caskroom/mambaforge/base/envs/supy/lib/python3.9/site-packages/pandas/core/
--reshape/merge.py:916: FutureWarning: In a future version, the Index constructor will_-
--not infer numeric dtypes when passed object-dtype sequences (matching Series behavior)
key_col = Index(lvals).where(~mask_left, rvals)
```

```
[2]: sp.show_version()
```

```
SuPy versions
------
supy: 2022.9.19.dev1-dirty
supy_driver: 2021a15
```

Load input files

For existing SUEWS users:

First, a path to SUEWS RunControl.nml should be specified, which will direct supy to locate input files.

```
[3]: path_runcontrol = Path('../sample_run') / 'RunControl.nml'
[4]: df_state_init = sp.init_supy(path_runcontrol)
```

```
2022-09-20 23:04:30,116 - SuPy - INFO - All cache cleared.
```

A sample df_state_init looks below (note that .T is used here to produce a nicer tableform view):

```
[5]: df_state_init.filter(like='method').T
[5]: grid
                                           1
                                  ind_dim
    var
    aerodynamicresistancemethod 0
                                           2
    basetmethod
                                           1
    evapmethod
                                  0
                                           2.
    diagmethod
                                           2
    emissionsmethod
                                  0
                                           2
    netradiationmethod
                                  0
                                           3
                                           2
    roughlenheatmethod
                                  0
    roughlenmommethod
    smdmethod
                                  0
    stabilitymethod
                                           3
    storageheatmethod
                                           1
    waterusemethod
                                           0
```

Following the convention of SUEWS, supy loads meteorological forcing (met-forcing) files at the grid level.

```
[6]: grid = df_state_init.index[0]
df_forcing = sp.load_forcing_grid(path_runcontrol, grid)
# by default, two years of forcing data are included;
# to save running time for demonstration, we only use one year in this demo
df_forcing=df_forcing.loc['2012'].iloc[1:]

2022-09-20 23:04:30,731 - SuPy - INFO - All cache cleared.
```

For new users to SUEWS/SuPy:

To ease the input file preparation, a helper function $load_SampleData$ is provided to get the sample input for SuPy simulations

```
[7]: df_state_init, df_forcing = sp.load_SampleData()
grid = df_state_init.index[0]
# by default, two years of forcing data are included;
# to save running time for demonstration, we only use one year in this demo
df_forcing=df_forcing.loc['2012'].iloc[1:]

2022-09-20 23:04:34,398 - SuPy - INFO - All cache cleared.
```

Overview of SuPy input

df_state_init

df_state_init includes model Initial state consisting of:

- surface characteristics (e.g., albedo, emissivity, land cover fractions, etc.; full details refer to SUEWS documentation)
- model configurations (e.g., stability; full details refer to SUEWS documentation)

Detailed description of variables in df_state_init refers to SuPy input

Surface land cover fraction information in the sample input dataset:

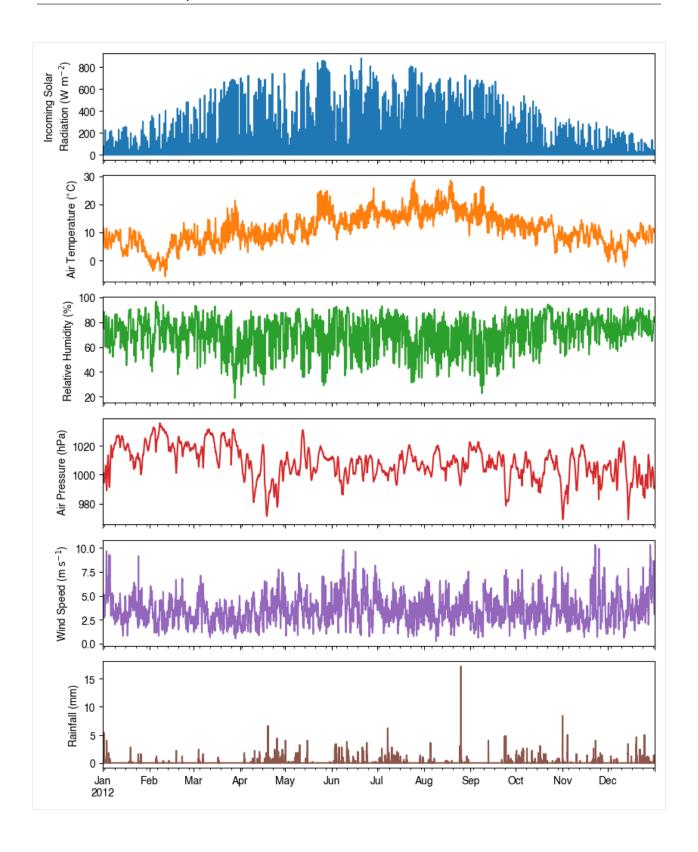
```
[8]: df_state_init.loc[:,['bldgh','evetreeh','dectreeh']]
[8]: var bldgh evetreeh dectreeh
ind_dim 0 0 0
grid
1 22.0 13.1 13.1
```

df_forcing

df_forcing includes meteorological and other external forcing information.

Detailed description of variables in df_forcing refers to SuPy input.

Below is an overview of forcing variables of the sample data set used in the following simulations.


```
[10]: list_var_forcing = [
          "kdown",
          "Tair",
          "RH",
          "pres".
          "U",
          "rain".
      dict_var_label = {
          "kdown": "Incoming Solar\n Radiation (\m mathrm{\m \ m^{-2}}\)",
          "Tair": "Air Temperature ($^{\circ}}$C)",
          "RH": r"Relative Humidity (%)",
          "pres": "Air Pressure (hPa)",
          "rain": "Rainfall (mm)",
          "U": "Wind Speed (m $\mathrm{s^{-1}}$)",
      }
      df_plot_forcing_x = (
          df_forcing.loc[:, list_var_forcing].copy().shift(-1).dropna(how="any")
```

(continues on next page)

(continued from previous page)

```
df_plot_forcing = df_plot_forcing_x.resample("1h").mean()
df_plot_forcing["rain"] = df_plot_forcing_x["rain"].resample("1h").sum()

axes = df_plot_forcing.plot(subplots=True, figsize=(8, 12), legend=False,)
fig = axes[0].figure
fig.tight_layout()
fig.autofmt_xdate(bottom=0.2, rotation=0, ha="center")
for ax, var in zip(axes, list_var_forcing):
    _ = ax.set_ylabel(dict_var_label[var])
```


Modification of SuPy input

Given pandas.DataFrame is the core data structure of SuPy, all operations, including modification, output, demonstration, etc., on SuPy inputs (df_state_init and df_forcing) can be done using pandas-based functions/methods.

Specifically, for modification, the following operations are essential:

locating data

Data can be located in two ways, namely: 1. by name via `.loc http://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#selection-by-position : iloc http://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#selection-by-position : _.

```
[11]: # view the surface fraction variable: `sfr`
      df_state_init.loc[:,'sfr_surf']
[11]: ind_dim (0,) (1,) (2,) (3,)
                                        (4,)
                                              (5,) (6,)
      grid
      1
               0.43 0.38
                            0.0 0.02 0.03
                                               0.0
                                                   0.14
[12]: # view the second row of `df_forcing`, which is a pandas Series
      df_forcing.iloc[1]
[12]: iy
               2012.000000
      id
                  1.000000
      it
                  0.000000
      imin
                 10.000000
               -999.000000
      qn
               -999.000000
      qh
               -999.000000
      qe
               -999.000000
      qs
      qf
               -999.000000
      U
                  5.176667
      RH
                 86.195000
      Tair
                 11.620000
      pres
               1001.833333
      rain
                  0.000000
      kdown
                  0.173333
               -999.000000
      snow
      ldown
               -999.000000
      fcld
               -999.000000
      Wuh
                  0.000000
      xsmd
               -999.000000
      lai
               -999.000000
      kdiff
               -999.000000
      kdir
               -999.000000
      wdir
               -999.000000
      isec
                  0.000000
      Name: 2012-01-01 00:10:00, dtype: float64
```

```
[13]: # view a particular position of `df_forcing`, which is a value df_forcing.iloc[8,9]
```

```
[13]: 4.78
```

setting new values

Setting new values is very straightforward: after locating the variables/data to modify, just set the new values accordingly:

Run simulations

Once met-forcing (via df_forcing) and initial conditions (via df_state_init) are loaded in, we call sp.run_supy to conduct a SUEWS simulation, which will return two pandas DataFrames: df_output and df_state.

df_output

df_output is an ensemble output collection of major SUEWS output groups, including:

- SUEWS: the essential SUEWS output variables
- DailyState: variables of daily state information
- snow: snow output variables (effective when snowuse = 1 set in df_state_init)

Detailed description of variables in df_output refers to SuPy output

df_state_final

df_state_final is a DataFrame for holding:

- 1. all model states if save_state is set to True when calling sp.run_supy (supy may run significantly slower for a large simulation);
- 2. or, only the final state if save_state is set to False (the default setting), in which mode supy has a similar performance as the standalone compiled SUEWS executable.

Entries in df_state_final have the same data structure as df_state_init and can thus be used for other SUEWS simulations starting at the timestamp as in df_state_final.

Detailed description of variables in df_state_final refers to SuPy output

[17]:	<pre>df_state_final.T.head()</pre>							
[17]:	datetime		2012-01-01 00:05:00	2013-01-01	00:00:00			
	grid		1		1			
	var	${\tt ind_dim}$						
	ah_min	(0,)	15.0		15.0			
		(1,)	15.0		15.0			
	ah_slope_cooling	(0,)	2.7		2.7			
		(1,)	2.7		2.7			
	ah_slope_heating	(0,)	2.7		2.7			

Examine results

Thanks to the functionality inherited from pandas and other packages under the PyData stack, compared with the standard SUEWS simulation workflow, supy enables more convenient examination of SUEWS results by statistics calculation, resampling, plotting (and many more).

Ouptut structure

df_output is organised with MultiIndex (grid,timestamp) and (group,varaible) as index and columns, respectively.

[18]:	df_oı	utput.head())					
[18]:	group)		SUEWS				\
	var			Kdown	Kup	Ldown	Lup	
	grid	datetime						
	1	2012-01-01	00:05:00	0.176667	0.02332	344.179805	371.582645	
		2012-01-01	00:10:00	0.173333	0.02288	344.190048	371.657938	
		2012-01-01	00:15:00	0.170000	0.02244	344.200308	371.733243	
		2012-01-01	00:20:00	0.166667	0.02200	344.210586	371.808562	
		2012-01-01	00:25:00	0.163333	0.02156	344.220882	371.883893	
	group)						\
	var			Tsurf		QN Q	F QS	
	grid	datetime						
	1	2012-01-01	00:05:00	11.607452	-27.2494	93 40.57400	1 -6.382243	
		2012-01-01	00:10:00	11.622405	-27.3174	36 39.72428	3 -6.228797	
		2012-01-01	00:15:00	11.637359	-27.3853	75 38.87456	6 -6.082788	

(continues on next page)

(continued from previous page)

```
2012-01-01 00:20:00 11.652312 -27.453309
                                                 38.024849 -5.943907
     2012-01-01 00:25:00 11.667265 -27.521237
                                                 37.175131 -5.811855
                                                        DailyState \
group
var
                                  QH
                                            QE
                                                ... DensSnow_Paved
grid datetime
                                                . . .
     2012-01-01 00:05:00 19.664156
                                     0.042594
                                                                NaN
     2012-01-01 00:10:00
                          18.593922
                                     0.041722
                                                                NaN
                                                                NaN
     2012-01-01 00:15:00
                          17.531131
                                     0.040849
     2012-01-01 00:20:00
                          16.475472
                                      0.039975
                                                                NaN
     2012-01-01 00:25:00 15.426648
                                     0.039101
                                                                NaN
group
                         DensSnow_Bldgs DensSnow_EveTr DensSnow_DecTr
var
grid datetime
     2012-01-01 00:05:00
                                     NaN
                                                    NaN
                                                                    NaN
     2012-01-01 00:10:00
                                     NaN
                                                    NaN
                                                                    NaN
     2012-01-01 00:15:00
                                     NaN
                                                    NaN
                                                                    NaN
     2012-01-01 00:20:00
                                     NaN
                                                    NaN
                                                                    NaN
     2012-01-01 00:25:00
                                     NaN
                                                    NaN
                                                                    NaN
group
var
                         DensSnow_Grass DensSnow_BSoil DensSnow_Water
grid datetime
     2012-01-01 00:05:00
                                     NaN
                                                    NaN
                                                                    NaN NaN NaN
     2012-01-01 00:10:00
                                                    NaN
                                                                    NaN NaN NaN
                                     NaN
     2012-01-01 00:15:00
                                     NaN
                                                    NaN
                                                                    Nan Nan Nan
     2012-01-01 00:20:00
                                     NaN
                                                    NaN
                                                                    Nan Nan Nan
     2012-01-01 00:25:00
                                     NaN
                                                    NaN
                                                                    NaN NaN NaN
group
var
                           a3
grid datetime
     2012-01-01 00:05:00 NaN
     2012-01-01 00:10:00 NaN
     2012-01-01 00:15:00 NaN
     2012-01-01 00:20:00 NaN
     2012-01-01 00:25:00 NaN
[5 rows x 924 columns]
```

Here we demonstrate several typical scenarios for SUEWS results examination.

The essential SUEWS output collection is extracted as a separate variable for easier processing in the following sections. More advanced slicing techniques are available in pandas documentation.

```
[19]: df_output_suews = df_output['SUEWS']
```

Statistics Calculation

We can use the .describe() method for a quick overview of the key surface energy balance budgets.

```
[20]: df_output_suews.loc[:, ['QN', 'QS', 'QH', 'QE', 'QF']].describe()
[20]: var
                        QN
                                        QS
                                                        QH
                                                                       QE
      count
             105407.000000
                            105407.000000
                                            105407.000000
                                                            105407.000000
                 39.883231
      mean
                                  5.830107
                                                62.666636
                                                                50.411038
      std
                132.019300
                                 49.161894
                                                77.074237
                                                                78.484562
                                              -177.705269
                                                                 0.000000
      min
                -86.331686
                                -75.287258
      25%
                -42.499510
                                -27.895414
                                                16.069451
                                                                 0.676206
                -25.749393
                                 -8.183901
                                                43.844985
                                                                14.712552
      50%
      75%
                 74.815479
                                 19.121287
                                                85.722951
                                                                69.135212
                679.848644
                                               480.795771
                                                               624.179069
                                237.932439
      max
                        QF
      var
      count 105407.000000
      mean
                 79.024549
      std
                 31.231867
      min
                 26.327536
      25%
                 50.058031
      50%
                 82.883410
      75%
                104.812507
      max
                160.023207
```

Plotting

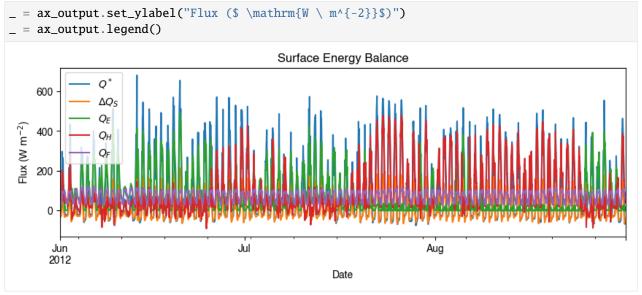
Basic example

Plotting is very straightforward via the .plot method bounded with pandas.DataFrame. Note the usage of loc for two slices of the output DataFrame.

```
[21]: # a dict for better display variable names
      dict_var_disp = {
          'QN': '$Q^*$',
          'QS': r'$\Delta Q_S$',
          'QE': '$Q_E$'.
          'QH': '$Q_H$'
          'QF': '$Q_F$',
          'Kdown': r'$K_{\downarrow}$',
          'Kup': r'$K_{\uparrow}$',
          'Ldown': r'$L_{\downarrow}$',
          'Lup': r'$L_{\uparrow}$',
          'Rain': '$P$',
          'Irr': '$I$',
          'Evap': '$E$',
          'RO': '$R$',
          'TotCh': '$\Delta S$',
      }
```

Quick look at the simulation results:

```
[22]: ax_output = df_output_suews\
           .loc[grid]\
           .loc['2012 6 1':'2012 6 7',
                ['QN', 'QS', 'QE', 'QH', 'QF']]\
           .rename(columns=dict_var_disp)\
           .plot()
        = ax_output.set_xlabel('Date')
        = ax_output.set_ylabel('Flux ($ \mathrm{W \ m^{-2}}}$)')
      _ = ax_output.legend()
             400
                                                                                           \Delta Q_S
                                                                                           QE
                                                                                           Qн
             300
        Flux (W m^{-2})
             200
             100
                0
            -100
                            02
                                        03
                                                   04
                                                              05
                                                                         06
                                                                                     07
                 01
                 Jun
                2012
                                                        Date
```

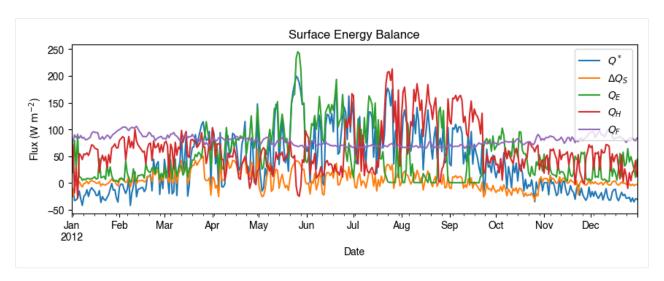

More examples

Below is a more complete example for examination of urban energy balance over the whole summer (June to August).

```
[23]: # energy balance
ax_output = (
    df_output_suews.loc[grid]
    .loc["2012 6":"2012 8", ["QN", "QS", "QE", "QH", "QF"]]
    .rename(columns=dict_var_disp)
    .plot(figsize=(10, 3), title="Surface Energy Balance",)
)
_ = ax_output.set_xlabel("Date")

(continues on next page)
```

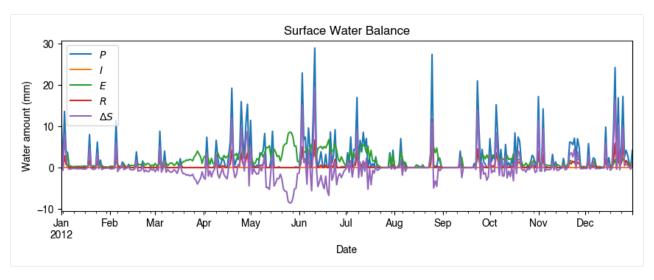
(continued from previous page)


Resampling

The suggested runtime/simulation frequency of SUEWS is 300 s, which usually results in a large output and may be over-weighted for storage and analysis. Also, you may feel an apparent slowdown in producing the above figure as a large amount of data were used for the plotting. To slim down the result size for analysis and output, we can resample the default output very easily.

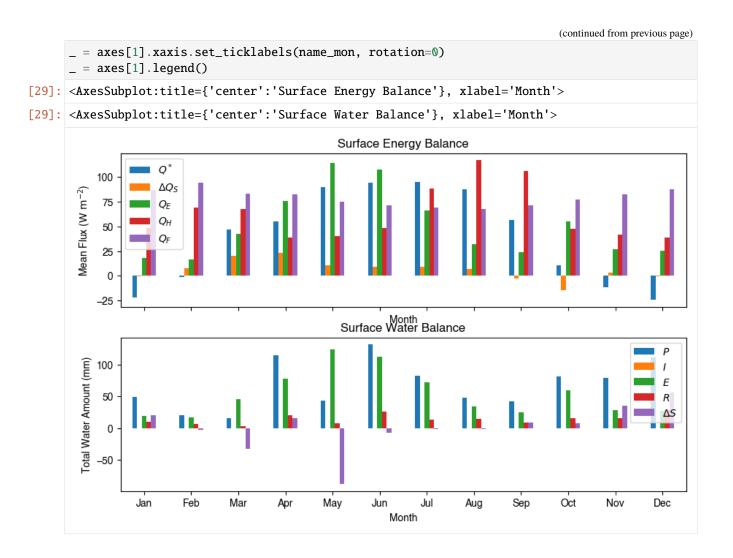
```
[24]: rsmp_1d = df_output_suews.loc[grid].resample("1d")
# daily mean values
df_1d_mean = rsmp_1d.mean()
# daily sum values
df_1d_sum = rsmp_1d.sum()
```

We can then re-examine the above energy balance at hourly scale and plotting will be significantly faster.


```
[25]: # energy balance
ax_output = (
    df_1d_mean.loc[:, ["QN", "QS", "QE", "QH", "QF"]]
    .rename(columns=dict_var_disp)
    .plot(figsize=(10, 3), title="Surface Energy Balance",)
)
    _ = ax_output.set_xlabel("Date")
    _ = ax_output.set_ylabel("Flux ($ \mathrm{W \ m^{-2}}$)")
    _ = ax_output.legend()
```


Then we use the hourly results for other analyses.

```
[26]: # radiation balance
      ax_output = (
           df_1d_mean.loc[:, ["QN", "Kdown", "Kup", "Ldown", "Lup"]]
           .rename(columns=dict_var_disp)
           .plot(figsize=(10, 3), title="Radiation Balance",)
      )
        = ax_output.set_xlabel("Date")
         = ax_output.set_ylabel("Flux ($ \mathrm{W \ m^{-2}}}$)")
         = ax_output.legend()
                                                     Radiation Balance
           400
           300
       Flux (W m<sup>-2</sup>)
           200
           100
                                                                                   Oct
                     Feb
                             Mar
                                     Apr
                                            May
                                                    Jun
                                                            Jul
                                                                    Aug
                                                                            Sep
                                                                                           Nov
                                                                                                   Dec
             2012
                                                            Date
```


```
[27]: # water balance
ax_output = (
    df_1d_sum.loc[:, ["Rain", "Irr", "Evap", "RO", "TotCh"]]
    .rename(columns=dict_var_disp)
    .plot(figsize=(10, 3), title="Surface Water Balance",)
)
    _ = ax_output.set_xlabel("Date")
    _ = ax_output.set_ylabel("Water amount (mm)")
    _ = ax_output.legend()
```


Get an overview of partitioning in energy and water balance at monthly scales:

```
[28]: # get a monthly Resampler
df_plot = df_output_suews.loc[grid].copy()
df_plot.index = df_plot.index.set_names("Month")
rsmp_1M = df_plot.shift(-1).dropna(how="all").resample("1M", kind="period")
# mean values
df_1M_mean = rsmp_1M.mean()
# sum values
df_1M_sum = rsmp_1M.sum()
```

```
[29]: # month names
      name_mon = [x.strftime("%b") for x in rsmp_1M.groups]
      # create subplots showing two panels together
      fig, axes = plt.subplots(2, 1, sharex=True)
      # surface energy balance
      df_1M_mean.loc[:, ["QN", "QS", "QE", "QH", "QF"]].rename(columns=dict_var_disp).plot(
          ax=axes[0], # specify the axis for plotting
          figsize=(10, 6), # specify figure size
         title="Surface Energy Balance",
         kind="bar",
      )
      # surface water balance
      df_1M_sum.loc[:, ["Rain", "Irr", "Evap", "RO", "TotCh"]].rename(
         columns=dict_var_disp
      ).plot(
          ax=axes[1], # specify the axis for plotting
          title="Surface Water Balance",
         kind="bar",
      )
      # annotations
      _ = axes[0].set_ylabel("Mean Flux ($ \mathrm{W \ m^{-2}}$)")
       = axes[0].legend()
       = axes[1].set_xlabel("Month")
      _ = axes[1].set_ylabel("Total Water Amount (mm)")
                                                                                  (continues on next page)
```


Output

The supy output can be saved as txt files for further analysis using supy function save_supy.

[30]:	df_oı	utput						
[30]:	grou	p		SUEWS				\
	var			Kdown	Kup	Ldown	Lup	
	grid	datetime						
	1	2012-01-01 00	0:05:00	0.176667	0.02332	344.179805	371.582645	
		2012-01-01 00	0:10:00	0.173333	0.02288	344.190048	371.657938	
		2012-01-01 00	0:15:00	0.170000	0.02244	344.200308	371.733243	
		2012-01-01 00	0:20:00	0.166667	0.02200	344.210586	371.808562	
		2012-01-01 00	0:25:00	0.163333	0.02156	344.220882	371.883893	
		2012-12-31 23	3:35:00	0.000000	0.00000	330.263407	363.676342	
		2012-12-31 23	3:40:00	0.000000	0.00000	330.263407	363.676342	
		2012-12-31 23	3:45:00	0.000000	0.00000	330.263407	363.676342	
		2012-12-31 23	3:50:00	0.000000	0.00000	330.263407	363.676342	
		2012-12-31 23	3:55:00	0.000000	0.00000	330.263407	363.676342	
								(

(continues on next page)

(continued from previous page)

```
group
                               Tsurf
                                                                     QS
var
                                              QN
                                                          QF
grid datetime
                           11.607452 -27.249493
     2012-01-01 00:05:00
                                                   40.574001 -6.382243
     2012-01-01 00:10:00
                           11.622405 -27.317436
                                                   39.724283 -6.228797
     2012-01-01 00:15:00
                           11.637359 -27.385375
                                                   38.874566 -6.082788
     2012-01-01 00:20:00
                           11.652312 -27.453309
                                                   38.024849 -5.943907
     2012-01-01 00:25:00
                           11.667265 -27.521237
                                                   37.175131 -5.811855
                                  . . .
                                                         . . .
                                             . . .
                           10.140000 -33.412935
     2012-12-31 23:35:00
                                                   53.348682 -4.399144
     2012-12-31 23:40:00
                           10.140000 -33.412935
                                                   52.422737 -4.397669
     2012-12-31 23:45:00
                           10.140000 -33.412935
                                                   51.496792 -4.395831
     2012-12-31 23:50:00
                           10.140000 -33.412935
                                                   50.570847 -4.393681
     2012-12-31 23:55:00
                           10.140000 -33.412935
                                                   46.174492 -4.391264
group
                                                           DailyState
var
                                   OH
                                              0E
                                                  ... DensSnow_Paved
grid datetime
     2012-01-01 00:05:00
                           19.664156
                                        0.042594
                                                                   NaN
     2012-01-01 00:10:00
                           18.593922
                                        0.041722
                                                                   NaN
     2012-01-01 00:15:00
                           17.531131
                                        0.040849
                                                                   NaN
     2012-01-01 00:20:00
                           16.475472
                                        0.039975
                                                                   NaN
     2012-01-01 00:25:00
                           15.426648
                                        0.039101
                                                                   NaN
                                                                   . . .
                                  . . .
                                             . . .
                            0.904146
     2012-12-31 23:35:00
                                       23.430745
                                                                   NaN
     2012-12-31 23:40:00
                            0.394992
                                       23.012479
                                                                   NaN
     2012-12-31 23:45:00
                           -0.121686
                                       22.601374
                                                                   NaN
     2012-12-31 23:50:00
                           -0.645680
                                       22.197273
                                                                   NaN
     2012-12-31 23:55:00
                           -2.949124
                                       20.101945
                                                                   0.0
group
var
                          DensSnow_Bldgs DensSnow_EveTr DensSnow_DecTr
grid datetime
     2012-01-01 00:05:00
                                      NaN
                                                      NaN
                                                                      NaN
                                                                      NaN
     2012-01-01 00:10:00
                                      NaN
                                                      NaN
     2012-01-01 00:15:00
                                      NaN
                                                      NaN
                                                                      NaN
     2012-01-01 00:20:00
                                      NaN
                                                      NaN
                                                                      NaN
     2012-01-01 00:25:00
                                      NaN
                                                      NaN
                                                                      NaN
                                                      . . .
                                                                      . . .
                                      . . .
     2012-12-31 23:35:00
                                      NaN
                                                      NaN
                                                                      NaN
     2012-12-31 23:40:00
                                      NaN
                                                      NaN
                                                                      NaN
     2012-12-31 23:45:00
                                      NaN
                                                      NaN
                                                                      NaN
     2012-12-31 23:50:00
                                      NaN
                                                      NaN
                                                                      NaN
     2012-12-31 23:55:00
                                                      0.0
                                                                      0.0
                                      0.0
group
                          DensSnow_Grass DensSnow_BSoil DensSnow_Water
var
grid datetime
     2012-01-01 00:05:00
                                                      NaN
                                                                      NaN
                                      NaN
     2012-01-01 00:10:00
                                      NaN
                                                      NaN
                                                                      NaN
     2012-01-01 00:15:00
                                      NaN
                                                      NaN
                                                                      NaN
```

(continues on next page)

(continued from previous page) 2012-01-01 00:20:00 NaN NaN NaN 2012-01-01 00:25:00 NaN NaN NaN 2012-12-31 23:35:00 NaN NaN NaN 2012-12-31 23:40:00 NaN NaN NaN 2012-12-31 23:45:00 NaN NaN NaN 2012-12-31 23:50:00 NaN NaN NaN 2012-12-31 23:55:00 0.0 0.0 0.0 group a1 a2 a3 var grid datetime 2012-01-01 00:05:00 NaN NaN NaN 2012-01-01 00:10:00 NaN NaN NaN NaN 2012-01-01 00:15:00 NaN NaN 2012-01-01 00:20:00 NaN NaN NaN 2012-01-01 00:25:00 NaN NaN NaN 2012-12-31 23:35:00 NaN NaN NaN 2012-12-31 23:40:00 NaN NaN NaN 2012-12-31 23:45:00 NaN NaN NaN 2012-12-31 23:50:00 NaN NaN NaN 2012-12-31 23:55:00 0.36935 0.3242 8.0995 [105407 rows x 924 columns]

```
[31]: list_path_save = sp.save_supy(df_output, df_state_final)
```

Impact Studies Using SuPy

Aim

In this tutorial, we aim to perform sensitivity analysis using supy in a parallel mode to investigate the impacts on urban climate of

- 1. surface properties: the physical attributes of land covers (e.g., albedo, water holding capacity, etc.)
- 2. background climate: longterm meteorological conditions (e.g., air temperature, precipitation, etc.)

load supy and sample dataset

```
[1]: from dask import dataframe as dd
    import supy as sp
    import pandas as pd
    import numpy as np
    from time import time
    /opt/homebrew/Caskroom/mambaforge/base/envs/supy/lib/python3.9/site-packages/pandas/core/
     →reshape/merge.py:916: FutureWarning: In a future version, the Index constructor will.
     →not infer numeric dtypes when passed object-dtype sequences (matching Series behavior)
      key_col = Index(lvals).where(~mask_left, rvals)
[2]: # load sample datasets
    df_state_init, df_forcing = sp.load_SampleData()
    # by default, two years of forcing data are included;
    # to save running time for demonstration, we only use one year in this demo
    df_forcing=df_forcing.loc['2012'].iloc[1:]
    # perform an example run to get output samples for later use
    df_output, df_state_final = sp.run_supy(df_forcing, df_state_init)
    2022-06-15 21:25:48,325 - SuPy - INFO - All cache cleared.
    2022-06-15 21:25:49,399 - SuPy - INFO - ============
    2022-06-15 21:25:49,399 - SuPy - INFO - Simulation period:
    2022-06-15 21:25:49,400 - SuPy - INFO -
                                              Start: 2012-01-01 00:05:00
    2022-06-15 21:25:49,400 - SuPy - INFO -
                                              End: 2012-12-31 23:55:00
    2022-06-15 21:25:49,400 - SuPy - INFO -
    2022-06-15 21:25:49,401 - SuPy - INFO - No. of grids: 1
    2022-06-15 21:25:49,401 - SuPy - INFO - SuPy is running in serial mode
    2022-06-15 21:25:54,675 - SuPy - INFO - Execution time: 5.3 s
    2022-06-15 21:25:54,676 - SuPy - INFO - =====================
```

Surface properties: surface albedo

Examine the default albedo values loaded from the sample dataset

```
[3]: df_state_init.alb

[3]: ind_dim (0,) (1,) (2,) (3,) (4,) (5,) (6,) grid
1     0.1  0.12  0.1  0.18  0.21  0.18  0.1
```

Copy the initial condition DataFrame to have a clean slate for our study

Note: DataFrame.copy() defaults to deepcopy

```
[16]: df_state_init_test = df_state_init.copy()
```

Set the Bldg land cover to 100% for this study

```
[17]: df_state_init_test.sfr_surf = 0
    df_state_init_test.loc[:, ('sfr_surf', '(1,)')] = 1
    df_state_init_test.sfr_surf

[17]: ind_dim (0,) (1,) (2,) (3,) (4,) (5,) (6,)
    grid
    1     0     1     0     0     0     0
```

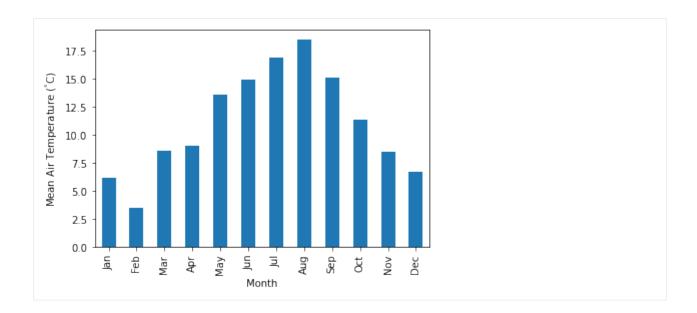
Construct a df_state_init_x dataframe to perform supy simulations with specified albedo

```
[18]: # create a `df_state_init_x` with different surface properties
n_test = 48
list_alb_test = np.linspace(0.1, 0.8, n_test).round(2)
df_state_init_x = df_state_init_test.append(
        [df_state_init_test]*(n_test-1), ignore_index=True)

# here we modify surface albedo
df_state_init_x.loc[:, ('alb', '(1,)')] = list_alb_test
df_state_init_x.index=df_state_init_x.index.rename('grid')
```

Conduct simulations with supy

```
[20]: df_forcing_part = df_forcing.loc["2012 01":"2012 07"]
    df_res_alb_test, df_state_final_x = sp.run_supy(
          df_forcing_part,
          df_state_init_x,
          logging_level=90,
)
```


Examine the simulation results

```
[21]: # choose results of July 2012 for analysis
      df_res_alb_test_july = df_res_alb_test.SUEWS.unstack(0).loc["2012 7"]
      df_res_alb_T2_stat = df_res_alb_test_july.T2.describe()
      df_res_alb_T2_diff = df_res_alb_T2_stat.transform(
          lambda x: x - df_res_alb_T2_stat.iloc[:, 0]
      df_res_alb_T2_diff.columns = list_alb_test - list_alb_test[0]
[22]: ax_temp_diff = df_res_alb_T2_diff.loc[["max", "mean", "min"]].T.plot()
      _ = ax_temp_diff.set_ylabel("$\Delta T_2$ ($^{\circ}}$C)")
      _ = ax_temp_diff.set_xlabel(r"$\Delta\alpha$")
      ax_{temp_diff.margins(x=0.2, y=0.2)}
                                                           max
                                                           mean
           0.0
                                                           min
          -0.1
         -0.2
          -0.3
          -0.4
          -0.5
                    0.0
                              0.2
                                         0.4
                                                   0.6
                                                             0.8
                                      Δα
```

Background climate: air temperature

Examine the monthly climatology of air temperature loaded from the sample dataset

```
[23]: df_plot = df_forcing.Tair.loc["2012"].resample("1m").mean()
    ax_temp = df_plot.plot.bar(color="tab:blue")
    _ = ax_temp.set_xticklabels(df_plot.index.strftime("%b"))
    _ = ax_temp.set_ylabel("Mean Air Temperature ($^\degree$C)")
    _ = ax_temp.set_xlabel("Month")
```


Construct a function to perform parallel supy simulations with specified diff_airtemp_test: the difference in air temperature between the one used in simulation and loaded from sample dataset.

Note

forcing data df_forcing has different data structure from df_state_init; so we need to modify run_supy_mgrids to implement a run_supy_mclims for different climate scenarios*

Let's start the implementation of run_supy_mclims with a small problem of four forcing groups (i.e., climate scenarios), where the air temperatures differ from the baseline scenario with a constant bias.

```
[24]: # save loaded sample datasets
df_forcing_part_test = df_forcing.loc['2012 1':'2012 7'].copy()
df_state_init_test = df_state_init.copy()
```

```
from dask import delayed
  # create a dict with four forcing conditions as a test
  n_test = 4
  list_TairDiff_test = np.linspace(0., 2, n_test).round(2)
  dict_df_forcing_x = {
     tairdiff: df_forcing_part_test.copy()
     for tairdiff in list_TairDiff_test}
  for tairdiff in dict_df_forcing_x:
     dict_df_forcing_x[tairdiff].loc[:, 'Tair'] += tairdiff

dd_forcing_x = {
     k: delayed(sp.run_supy)(df, df_state_init_test,logging_level=90)[0]
     for k, df in dict_df_forcing_x.items()}

df_res_tairdiff_test0 = delayed(pd.concat)(
     dd_forcing_x,
```

(continues on next page)

(continued from previous page)

```
keys=list_TairDiff_test,
         names=['tairdiff'],
     )
[26]: # test the performance of a parallel run
     t0 = time()
     df_res_tairdiff_test = df_res_tairdiff_test0\
          .compute(scheduler='threads')\
          .reset_index('grid', drop=True)
     t1 = time()
     t_par = t1 - t0
     print(f'Execution time: {t_par:.2f} s')
     Execution time: 12.16 s
[27]: # function for multi-climate `run_supy`
      # wrapping the above code into one
     def run_supy_mclims(df_state_init, dict_df_forcing_mclims):
         dd_forcing_x = {
              k: delayed(sp.run_supy)(df, df_state_init_test,logging_level=90)[0]
              for k, df in dict_df_forcing_x.items()}
          df_output_mclims0 = delayed(pd.concat)(
              dd_forcing_x,
              keys=list(dict_df_forcing_x.keys()),
              names=['clm'],
         ).compute(scheduler='threads')
         df_output_mclims = df_output_mclims0.reset_index('grid', drop=True)
         return df_output_mclims
```

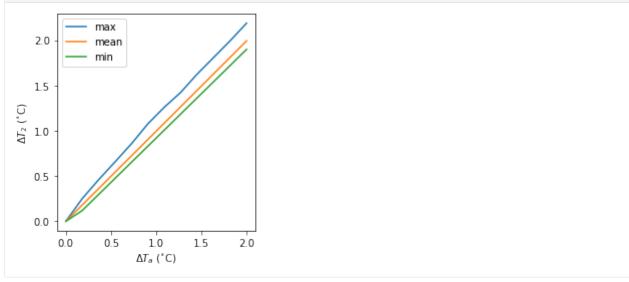
Construct dict_df_forcing_x with multiple forcing DataFrames

```
[28]: # save loaded sample datasets
    df_forcing_part_test = df_forcing.loc['2012 1':'2012 7'].copy()
    df_state_init_test = df_state_init.copy()

# create a dict with a number of forcing conditions
    n_test = 12 # can be set with a smaller value to save simulation time
    list_TairDiff_test = np.linspace(0., 2, n_test).round(2)
    dict_df_forcing_x = {
        tairdiff: df_forcing_part_test.copy()
        for tairdiff in list_TairDiff_test}

for tairdiff in dict_df_forcing_x:
        dict_df_forcing_x[tairdiff].loc[:, 'Tair'] += tairdiff
```

Perform simulations


```
[29]: # run parallel simulations using `run_supy_mclims`
    t0 = time()
    df_airtemp_test_x = run_supy_mclims(df_state_init_test, dict_df_forcing_x)
    t1 = time()
    t_par = t1-t0
    print(f'Execution time: {t_par:.2f} s')

Execution time: 35.35 s
```

Examine the results

```
[30]: df_airtemp_test = df_airtemp_test_x.SUEWS.unstack(0)
    df_temp_diff = df_airtemp_test.T2.transform(lambda x: x - df_airtemp_test.T2[0.0])
    df_temp_diff_ana = df_temp_diff.loc["2012 7"]
    df_temp_diff_stat = df_temp_diff_ana.describe().loc[["max", "mean", "min"]].T
```

```
[31]: ax_temp_diff_stat=df_temp_diff_stat.plot()
    _=ax_temp_diff_stat.set_ylabel('$\\Delta T_2$ ($^{\\circ}}$C)')
    _=ax_temp_diff_stat.set_xlabel('$\\Delta T_{a}$ ($^{\\circ}}$C)')
    ax_temp_diff_stat.set_aspect('equal')
```


The T_2 results indicate the increased T_a has different impacts on the T_2 metrics (minimum, mean and maximum) but all increase linearly with T_a . The maximum T_2 has the stronger response compared to the other metrics.

Interaction between SuPy and external models

Introduction

SUEWS can be coupled to other models that provide or require forcing data using the SuPy single timestep running mode. We demonstrate this feature with a simple online anthropogenic heat flux model.

Anthropogenic heat flux (Q_F) is an additional term to the surface energy balance in urban areas associated with human activities (Gabey et al., 2018; Grimmond, 1992; Nie et al., 2014; 2016; Sailor, 2011). In most cities, the largest emission source is from buildings (Hamilton et al., 2009; Iamarino et al., 2011; Sailor, 2011) and is highly dependent on outdoor ambient air temperature.

load necessary packages

```
[1]: import supy as sp
  import pandas as pd
  import numpy as np
  import matplotlib.pyplot as plt
  import matplotlib.dates as mdates
  import seaborn as sns

%matplotlib inline
# sp.show_version()
```

run SUEWS with default settings

```
[2]: # load sample run dataset
    df_state_init, df_forcing = sp.load_SampleData()
    # turn off the snow module as unnecessary at the sample site
    df_state_init.loc[:, "snowuse"] = 0
    # copy `df_state_init` as the basis for later simulations
    df_state_init_def = df_state_init.copy()
    # by default, two years of forcing data are included;
    # to save running time for demonstration, we only use one year in this demo
    df_forcing = df_forcing.loc["2012"].iloc[1:]
    # set QF as zero for later comparison
    df_forcing_def = df_forcing.copy()
    grid = df_state_init_def.index[0]
    df_state_init_def.loc[:, "emissionsmethod"] = 0
    df_forcing_def["qf"] = 0
    # run supv
    df_output, df_state = sp.run_supy(df_forcing_def, df_state_init_def)
    df_output_def = df_output.loc[grid, "SUEWS"]
```

a simple QF model: QF_simple

model description

For demonstration purposes we have created a very simple model instead of using the SUEWS Q_F (Järvi et al. 2011) with feedback from outdoor air temperature. The simple Q_F model considers only building heating and cooling:

$$Q_F = \begin{cases} (T_2 - T_C) \times C_B, \ T_2 > T_C \\ (T_H - T_2) \times H_B, \ T_2 < T_H \\ Q_{F0} \end{cases}$$

where T_C (T_H) is the cooling (heating) threshold temperature of buildings, $_B$ ($_B$) is the building cooling (heating) rate, and $_{F0}$ is the baseline anthropogenic heat. The parameters used are: $_C$ ($_H$) set as 20 °C (10 °C), $_B$ ($_B$) set as 1.5 W m $^{-2}$ K $^{-1}$ (3 W m $^{-2}$ K $^{-1}$) and Q_{F0} is set as 0 W m $^{-2}$, implying other building activities (e.g. lighting, water heating, computers) are zero and therefore do not change the temperature or change with temperature.

implementation

```
[3]: def QF_simple(T2):
    qf_cooling = (T2-20)*5 if T2 > 20 else 0
    qf_heating = (10-T2)*10 if T2 < 10 else 0
    qf_res = np.max([qf_heating, qf_cooling])*0.3
    return qf_res</pre>
```

Visualise the QF_simple model:

(continues on next page)

```
_=ax_qf_func.legend(title='simple $Q_F$')
_=ax_qf_func.annotate(
   "$T_C$",
    xy=(20, 0),
    xycoords='data',
    xytext=(25, 5),
    textcoords='data',
    arrowprops=dict(
        arrowstyle="->",
        color="0.5",
        shrinkA=5,
        shrinkB=5,
        patchA=None,
        patchB=None,
        connectionstyle='arc3',
    ),
_=ax_qf_func.annotate(
    "$T_H$",
    xy=(10, 0),
    xycoords='data',
    xytext=(5, 5),
    textcoords='data',
    arrowprops=dict(
        arrowstyle="->",
        color="0.5".
        shrinkA=5,
        shrinkB=5,
        patchA=None,
        patchB=None,
        connectionstyle='arc3',
    ),
_=ax_qf_func.annotate(
    "slope: $C_B$",
    xy=(30, QF_simple(30)),
    xycoords='data',
    xytext=(20, 20),
    textcoords='data',
    arrowprops=dict(
        arrowstyle="->",
        color="0.5",
        shrinkA=5,
        shrinkB=5,
        patchA=None,
        patchB=None,
        connectionstyle='arc3, rad=0.3',
    ),
_=ax_qf_func.annotate(
    "slope: $H_B$",
```

```
xy=(5, QF\_simple(5)),
    xycoords='data',
    xytext=(10, 20),
    textcoords='data',
     arrowprops=dict(
          arrowstyle="->",
          color="0.5",
          shrinkA=5,
          shrinkB=5,
         patchA=None,
         patchB=None,
          connectionstyle='arc3, rad=-0.3',
    ),
)
_=ax_qf_func.plot(10, 0, 'o', color='C1', fillstyle='none')
_ = ax_qf_func.plot(20, 0, 'o', color='C0', fillstyle='none')
                                  simple Q_F
    40
                               cooling: (T_a - T_c) \times C_B
                               heating:(T_H - T_a) \times H_B
                               baseline: QFO
    30
 Q<sub>F</sub> (W m<sup>-2</sup>)
                                       slope: C_B
     10
     0
                                     20
                                                30
                                   T2 ( ° C)
```

communication between supy and QF_simple

construct a new coupled function

The coupling between the simple Q_F model and SuPy is done via the low-level function suews_cal_tstep, which is an interface function in charge of communications between SuPy frontend and the calculation kernel. By setting SuPy to receive external Q_F as forcing, at each timestep, the simple Q_F model is driven by the SuPy output T_2 and provides SuPy with Q_F , which thus forms a two-way coupled loop.

```
[5]: # load extra low-level functions from supy to construct interactive functions
from supy._post import pack_df_output, pack_df_state
from supy._run import suews_cal_tstep, pack_grid_dict

def run_supy_qf(df_forcing_test, df_state_init_test):
    grid = df_state_init_test.index[0]

    (continues on next page)
```

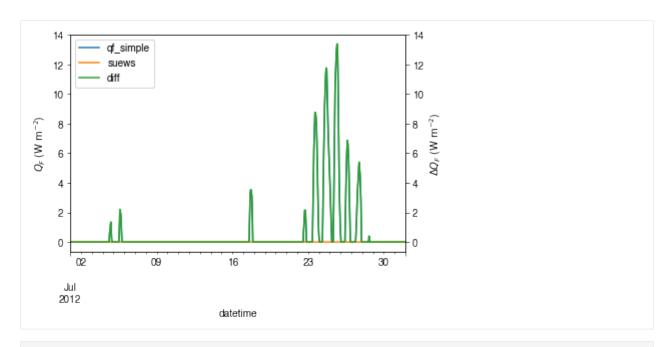
```
df_state_init_test.loc[grid, 'emissionsmethod'] = 0
df_forcing_test = df_forcing_test\
    .assign(
        metforcingdata_grid=0,
        ts5mindata_ir=0,
   )\
    .rename(
        # remanae is a workaround to resolve naming inconsistency between
        # suews fortran code interface and input forcing file headers
        columns={
            '%' + 'iy': 'iy',
            'id': 'id',
            'it': 'it',
            'imin': 'imin',
            'qn': 'qn1_obs',
            'qh': 'qh_obs',
            'qe': 'qe',
            'qs': 'qs_obs',
            'qf': 'qf_obs',
            'U': 'avu1',
            'RH': 'avrh'
            'Tair': 'temp_c',
            'pres': 'press_hpa',
            'rain': 'precip',
            'kdown': 'avkdn',
            'snow': 'snowfrac_obs'.
            'ldown': 'ldown_obs',
            'fcld': 'fcld_obs',
            'Wuh': 'wu_m3',
            'xsmd': 'xsmd',
            'lai': 'lai_obs'.
            'kdiff': 'kdiff',
            'kdir': 'kdir',
            'wdir': 'wdir',
        }
    )
t2_ext = df_forcing_test.iloc[0].temp_c
qf_ext = QF_simple(t2_ext)
# initialise dicts for holding results
dict_state = {}
dict_output = {}
# starting tstep
t_start = df_forcing_test.index[0]
# convert df to dict with `itertuples` for better performance
dict_forcing = {
   row.Index: row._asdict()
    for row in df_forcing_test.itertuples()
}
```

```
# dict state is used to save model states for later use
dict_state = {(t_start, grid): pack_grid_dict(series_state_init)
              for grid, series_state_init in df_state_init_test.iterrows()}
# just use a single grid run for the test coupling
for tstep in df_forcing_test.index:
    # load met forcing at `tstep`
    met_forcing_tstep = dict_forcing[tstep]
    # inject `qf_ext` to `met_forcing_tstep`
    met_forcing_tstep['qf_obs'] = qf_ext
    # update model state
    dict_state_start = dict_state[(tstep, grid)]
    dict_state_end, dict_output_tstep = suews_cal_tstep(
        dict_state_start, met_forcing_tstep)
    # the fourth to the last is `T2` stored in the result array
    t2_ext = dict_output_tstep['dataoutlinesuews'][-4]
    qf_ext = QF_simple(t2_ext)
    dict_output.update({(tstep, grid): dict_output_tstep})
    dict_state.update({(tstep + tstep.freq, grid): dict_state_end})
# pack results as easier DataFrames
df_output_test = pack_df_output(dict_output).swaplevel(0, 1)
df_state_test = pack_df_state(dict_state).swaplevel(0, 1)
return df_output_test.loc[grid, 'SUEWS'], df_state_test
```

simulations for summer and winter months

The simulation using SuPy coupled is performed for London 2012. The data analysed are a summer (July) and a winter (December) month. Initially Q_F is 0 W m^{-2} the T_2 is determined and used to determine $Q_{F[1]}$ which in turn modifies $T_{2[1]}$ and therefore modifies $Q_{F[2]}$ and the diagnosed $T_{2[2]}$.

spin-up run (January to June) for summer simulation

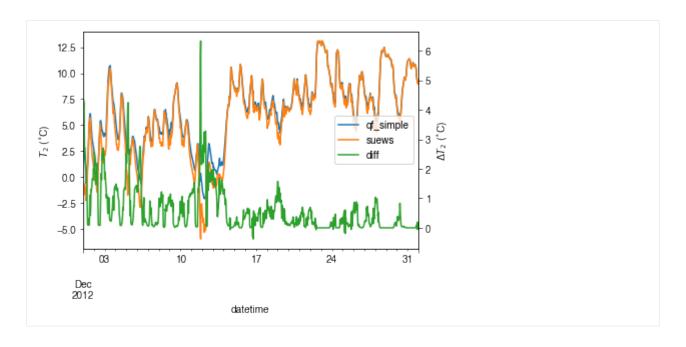

spin-up run (July to October) for winter simulation

coupled simulation

examine the results

sumer

```
[9]: var = "QF"
  var_label = "$Q_F$ ($ \mathrm{W \ m^{-2}}$)"
  var_label_right = "$\Delta Q_F$ ($ \mathrm{W \ m^{-2}}$)"
  period = "2012-07"
  df_test = df_output_test_summer
  y1 = df_test.loc[period, var].rename("qf_simple")
  y2 = df_output_def.loc[period, var].rename("suews")
  y3 = (y1 - y2).rename("diff")
  df_plot = pd.concat([y1, y2, y3], axis=1)
  ax = df_plot.plot(secondary_y="diff")
  _ = ax.set_ylabel(var_label)
  _ = ax.right_ax.set_ylabel(var_label_right)
  lines = ax.get_lines() + ax.right_ax.get_lines()
  _ = ax.legend(lines, [l.get_label() for l in lines], loc="best")
```




```
[10]: var = "T2"
      var_label = "$T_2$ ($^{\circ}$C)"
      var_label_right = "$\Delta T_2$ ($^{\circ}$C)"
      period = "2012-07"
      df_test = df_output_test_summer
      y1 = df_test.loc[period, var].rename("qf_simple")
      y2 = df_output_def.loc[period, var].rename("suews")
      y3 = (y1 - y2).rename("diff")
      df_plot = pd.concat([y1, y2, y3], axis=1)
      ax = df_plot.plot(secondary_y="diff")
      _ = ax.set_ylabel(var_label)
      _ = ax.right_ax.set_ylabel(var_label_right)
      lines = ax.get_lines() + ax.right_ax.get_lines()
      _ = ax.legend(lines, [l.get_label() for l in lines], loc="best")
                                                                    0.50
                    qf_simple
          27.5
                    suews
                                                                    0.25
                    diff
          25.0
                                                                    0.00
          22.5
                                                                    -0.25
          20.0
                                                                    0.50 🛱
          17.5
                                                                    0.75
          15.0
                                                                     1.00
          12.5
                                                                    -1.25
               02
                           09
                                                  23
                                                              30
                                       16
            Jul
2012
                                     datetime
```

winter

```
[11]: var = "QF"
      var\_label = "Q_F$ ($ \mathbb{W} \setminus m^{-2})$)"
      var_label_right = "$\Delta Q_F$ ($ \mathrm{W} \ m^{-2})$)"
      period = "2012 12"
      df_test = df_output_test_winter
      y1 = df_test.loc[period, var].rename("qf_simple")
      y2 = df_output_def.loc[period, var].rename("suews")
      y3 = (y1 - y2).rename("diff")
      df_plot = pd_concat([y1, y2, y3], axis=1)
      ax = df_plot.plot(secondary_y="diff")
      _ = ax.set_ylabel(var_label)
       _ = ax.right_ax.set_ylabel(var_label_right)
      lines = ax.get_lines() + ax.right_ax.get_lines()
      _ = ax.legend(lines, [l.get_label() for l in lines], loc="best")
                                                           qf_simple
          35
                                                                    35
                                                           suews
                                                           diff
          30
                                                                     30
                                                                     25
          25
       Q<sub>E</sub> (W m<sup>-2</sup>)
                                                                     20
          20
           15
           10
           5
           0
                03
            Dec
                                      datetime
```

```
[12]: var = "T2"
  var_label = "$T_2$ ($^{\circ}$C)"
  var_label_right = "$\Delta T_2$ ($^{\circ}$C)"
  period = "2012 12"
  df_test = df_output_test_winter
  y1 = df_test.loc[period, var].rename("qf_simple")
  y2 = df_output_def.loc[period, var].rename("suews")
  y3 = (y1 - y2).rename("diff")
  df_plot = pd.concat([y1, y2, y3], axis=1)
  ax = df_plot.plot(secondary_y="diff")
  _ = ax.set_ylabel(var_label)
  _ = ax.right_ax.set_ylabel(var_label_right)
  lines = ax.get_lines() + ax.right_ax.get_lines()
  _ = ax.legend(lines, [l.get_label() for l in lines], loc="center right")
```


comparison in ΔQ_F - $\Delta T2$ feedback between summer and winter

```
[13]: # filter results using `where` to choose periods when `QF_simple` is effective
      # (i.e. activated by outdoor air temperatures)
      df_diff_summer = (
          (df_output_test_summer - df_output_def)
          .where(df_output_def.T2 > 20, np.nan)
          .dropna(how="all", axis=0)
      df_diff_winter = (
          (df_output_test_winter - df_output_def)
          .where(df_output_test_winter.T2 < 10, np.nan)</pre>
          .dropna(how="all", axis=0)
          .loc["20121215":]
     )
      df_diff_season = pd.concat(
          [df_diff_winter.assign(season="winter"), df_diff_summer.assign(season="summer"),]
      ).loc[:, ["season", "QF", "T2"]]
      g = sns.lmplot(
          data=df_diff_season,
          x="QF",
          y="T2",
          hue="season",
          height=4,
          truncate=False,
          markers="o",
          legend_out=False,
          scatter_kws={"s": 1, "zorder": 0, "alpha": 0.8,},
                                                                                    (continues on next page)
```

```
line_kws={"zorder": 6, "linestyle": "--"},
  g.set_axis_labels(
   "$\Delta Q_F$ ($ \mathrm{W \ m^{-2}}$)", "$\Delta T_2$ ($^{\circ}$C)",
= g.ax.legend(markerscale=4)
  g.despine(top=False, right=False)
              winter
   1.50
              summer
   1.25
   1.00
   0.75
  0.50
  0.25
   0.00
  -0.25
                            10
         0
                                      15
                   5
                     \Delta Q_F (W m<sup>-2</sup>)
```

The above figure indicates a positive feedback, as Q_F is increased there is an elevated T_2 but with different magnitudes given the non-linearlity in the SUEWS modelling system. Of particular note is the positive feedback loop under warm air temperatures: the anthropogenic heat emissions increase which in turn elevates the outdoor air temperature causing yet more anthropogenic heat release. Note that London is relatively cool so the enhancement is much less than it would be in warmer cities.

Set up SuPy for Your Own Site

This tutorial aims to demonstrate how to set up SuPy for your own site to model the surface energy balance (SEB).

Please note: SuPy is a Python-enhanced urban climate model with SUEWS, Surface Urban Energy and Water Balance Scheme, as its computation core.

We thus strongly recommend/encourage users to have a good understanding of SUEWS first before diving into the SuPy world.

In this tutorial, We will use an AmeriFlux site US-AR1 as example:

starting by preparation of input data, we show how to specify site characteristics and choose proper scheme options, then conduct simulations, finally provide some demo figures to help understand the simulation results.

A brief structure is as follows:

- 1. Preparing the input data;
- 2. Running a simulation;
- 3. Examination of results; and
- 4. Further exploration

Boilerplate code

```
[1]: import matplotlib.pyplot as plt
  import supy as sp
  import pandas as pd
  import numpy as np
  from pathlib import Path
  %matplotlib inline
```

Prepare input data

Site-specific configuration of surface parameters

Given pandas.DataFrame as the core data structure of SuPy, all operations, including modification, output, demonstration, etc., on SuPy inputs (df_state_init and df_forcing) can be done using pandas-based functions/methods. Please see SuPy quickstart for methods to do so.

Below we will modify several key properties of the chosen site with appropriate values to run SuPy. First, we copy the df_state_init to have a new DataFrame for manipulation.

```
[2]: df_state_init,df_forcing=sp.load_SampleData()
    df_state_amf = df_state_init.copy()
    2020-07-06 11:24:40,102 - SuPy - INFO - All cache cleared.
```

```
[3]: # site identifier
name_site = 'US-AR1'
```

Details for determining the proper values of selected physical parameters can be found here.

location

```
[4]: # latitude
    df_state_amf.loc[:, 'lat'] = 41.37
    # longitude
    df_state_amf.loc[:, 'lng'] = -106.24
    # altitude
    df_state_amf.loc[:, 'alt'] = 611.
```

land cover fraction

Land covers in SUEWS

```
[5]: # view the surface fraction variable: `sfr`
    df_state_amf.loc[:, 'sfr'] = 0
    df_state_amf.loc[:, ('sfr', '(4,)')] = 1
    df_state_amf.loc[:, 'sfr']
```

```
[5]: ind_dim (0,) (1,) (2,) (3,) (4,) (5,) (6,) grid
1 0.0 0.0 0.0 0.0 1.0 0.0 0.0
```

albedo

```
[6]: # we only set values for grass as the modelled site has a single land cover type: grass.
    df_state_amf.albmax_grass = 0.19
    df_state_amf.albmin_grass = 0.14
```

```
[7]: # initial albedo value
df_state_amf.loc[:, 'albgrass_id'] = 0.14
```

LAI/phenology

```
[8]: df_state_amf.filter(like='lai')
[8]: var
           laimax
                          laimin
                                          laipower
    ind_dim
             (0,) (1,) (2,) (0,) (1,) (2,) (0, 0) (0, 1) (0, 2) (1, 0)
    grid
    1
              5.1 5.5 5.9 4.0 1.0 1.6 0.04
                                                          0.04 0.001 ...
                                                    0.04
                                 laitype
                                                laicalcyes lai_id
    ind_dim (3, 0) (3, 1) (3, 2) (0,) (1,) (2,)
                                                        0 (0,) (1,) (2,)
    grid
            0.0015 0.0015 0.0015 1.0 1.0 1.0
                                                              4.0 1.0 1.6
    [1 rows x 25 columns]
```

```
[9]: # properties to control vegetation phenology
# you can skip the details for and just set them as provided below

# LAI paramters

df_state_amf.loc[:, ('laimax', '(2,)')] = 1

df_state_amf.loc[:, ('laimin', '(2,)')] = 0.2

# initial LAI

df_state_amf.loc[:, ('lai_id', '(2,)')] = 0.2

# BaseT

df_state_amf.loc[:, ('baset', '(2,)')] = 5

# BaseTe

df_state_amf.loc[:, ('basete', '(2,)')] = 20

# SDDFull

df_state_amf.loc[:, ('sddfull', '(2,)')] = -1000

# GDDFull

df_state_amf.loc[:, ('gddfull', '(2,)')] = 1000
```

surface resistance

```
[10]: # parameters to model surface resistance
    df_state_amf.maxconductance = 18.7
    df_state_amf.g1 = 1
    df_state_amf.g2 = 104.215
    df_state_amf.g3 = 0.424
    df_state_amf.g4 = 0.814
    df_state_amf.g5 = 36.945
    df_state_amf.g6 = 0.025
```

measurement height

```
[11]: # height where forcing variables are measured/collected
    df_state_amf.z = 2.84
```

urban feature

```
[12]: # disable anthropogenic heat by setting zero population
    df_state_amf.popdensdaytime = 0
    df_state_amf.popdensnighttime = 0
```

check df_state

```
[13]: # this procedure is to double-check proper values are set in `df_state_amf`
sp.check_state(df_state_amf)

2020-07-06 11:24:43,372 - SuPy - INFO - SuPy is validating `df_state`...
2020-07-06 11:24:43,574 - SuPy - INFO - All checks for `df_state` passed!
```

prepare forcing conditions

Here we use the SuPy utility function read_forcing to read in forcing data from an external file in the format of SUEWS input. Also note, this read_forcing utility will also resample the forcing data to a proper temporal resolution to run SuPy/SUEWS, which is usually 5 min (300 s).

load and resample forcing data

UMEP workshop users: please note the AMF file path might be DIFFERENT from yours; please set it to the location where your downloaded file is placed.

The checker detected invalid values in variable kdown: negative incoming solar radiation is found. We then need to fix this as follows:

```
[16]: # modify invalid values
df_forcing_amf.kdown = df_forcing_amf.kdown.where(df_forcing_amf.kdown > 0, 0)
```

```
[17]: # check `df_forcing` again
    _ = sp.check_forcing(df_forcing_amf)

2020-07-06 11:24:46,312 - SuPy - INFO - SuPy is validating `df_forcing`...
2020-07-06 11:24:48,523 - SuPy - INFO - All checks for `df_forcing` passed!
```

examine forcing data

We can examine the forcing data:

```
[18]: list_var_forcing = [
          "kdown".
          "Tair",
          "RH",
          "pres",
          "U",
          "rain",
     dict_var_label = {
          "kdown": "Incoming Solar\n Radiation ($ \mathrm{W \ m^{-2}}$)",
          "Tair": "Air Temperature ($^{\circ}}$C)",
         "RH": r"Relative Humidity (%)",
         "pres": "Air Pressure (hPa)",
          "rain": "Rainfall (mm)",
          "U": "Wind Speed (m $\mathrm{s^{-1}}$)",
     df_plot_forcing_x = (
          df_forcing_amf.loc[:, list_var_forcing].copy().shift(-1).dropna(how="any")
     df_plot_forcing = df_plot_forcing_x.resample("1h").mean()
     df_plot_forcing["rain"] = df_plot_forcing_x["rain"].resample("1h").sum()
     axes = df_plot_forcing.plot(subplots=True, figsize=(8, 12), legend=False,)
     fig = axes[0].figure
     fig.tight_layout()
```

(continued from previous page) fig.autofmt_xdate(bottom=0.2, rotation=0, ha="center") for ax, var in zip(axes, list_var_forcing): _ = ax.set_ylabel(dict_var_label[var]) 1000 Radiation (W m⁻²) Incoming Solar 750 500 250 0 Air Temperature (°C) Relative Humidity (%) 60 40 20 960 Air Pressure (hPa) 940 920 Wind Speed (m s⁻¹) 10 5 0 15 Rainfall (mm) 10 5 0 Jan 2010 Sep Dec Feb Mar May Jun Jul Aug Oct Nov

Run simulations

Once met-forcing (via df_forcing_amf) and initial conditions (via df_state_amf) are loaded in, we call sp.run_supy to conduct a SUEWS simulation, which will return two pandas DataFrames: df_output and df_state_final.

df_output

df_output is an ensemble output collection of major SUEWS output groups, including:

- SUEWS: the essential SUEWS output variables
- DailyState: variables of daily state information
- snow: snow output variables (effective when snowuse = 1 set in df_state_init)
- RSL: profile of air temperature, humidity and wind speed within roughness sub-layer.

Detailed description of variables in df_output refers to SuPy output

```
[20]: df_output.columns.levels[0]
[20]: Index(['SUEWS', 'snow', 'RSL', 'SOLWEIG', 'DailyState'], dtype='object', name='group')
```

df_state_final

 ${\tt df_state_final} \ is \ a \ {\tt DataFrame} \ for \ holding:$

- 1. all model states if save_state is set to True when calling sp.run_supy (supy may run significantly slower for a large simulations);
- 2. or, only the final state if save_state is set to False (the default setting) in which mode supy has a similar performance as the standalone compiled SUEWS executable.

Entries in df_state_final have the same data structure as df_state_init and can thus be used for other SUEWS simulations staring at the timestamp as in df_state_final.

Detailed description of variables in df_state_final refers to SuPy output

var	ind_dim			
ah_min	(0,)	15.0	15.0	
	(1,)	15.0	15.0	
ah_slope_cooling	(0,)	2.7	2.7	
	(1,)	2.7	2.7	
ah_slope_heating	(0,)	2.7	2.7	

Examine results

Thanks to the functionality inherited from pandas and other packages under the PyData stack, compared with the standard SUEWS simulation workflow, supy enables more convenient examination of SUEWS results by statistics calculation, resampling, plotting (and many more).

Ouptut structure

df_output is organised with MultiIndex (grid,timestamp) and (group,varaible) as index and columns,
respectively.

	utput.head()													,
grou	p		SUEWS					_	_	_				\
var			Kdown	Kup	Ld	own		Lup	Ts	urf			QN	
	datetime													
1	2010-01-01			0.0	265.492			538434						
	2010-01-01			0.0	265.492			538434						
	2010-01-01			0.0	265.492									
	2010-01-01			0.0										
	2010-01-01	00:25:00	0.0	0.0	265.492	652	307.8	325865	-1.	593	-42	.3332	213	
grou	р										\			
var			QF		QS	Q)H	(QΕ					
grid	datetime													
1	2010-01-01	00:05:00	0.0 -	9.668	746 -24.	38797	'6 1	1.28440	00					
	2010-01-01	00:10:00	0.0 -	9.424	108 -6.	67697	'3 1	1.61819	90					
	2010-01-01	00:15:00	0.0 -	-0.5459	992 16.	45862	7 11	1.83359	92					
	2010-01-01	00:20:00	0.0 -	-0.5362	225 15.	98862	1 11	1.83074	41					
	2010-01-01	00:25:00	0.0 -	-0.5256	680 15.	53708	37 11	1.8279	34					
grou	р		Da	ailySta	ate							\		
var			DensSn	now_Pav	ved Dens	Snow_	Bldgs	s Dens	Snow	_Eve	eTr			
grid	datetime													
1	2010-01-01	00:05:00		1	NaN		NaN	J		1	laN			
	2010-01-01	00:10:00		1	NaN		NaN	J		1	laN			
	2010-01-01	00:15:00		1	NaN		NaN	1		1	laN			
	2010-01-01	00:20:00		1	NaN		NaN	1		1	laN			
	2010-01-01	00:25:00		1	NaN		NaN	1		ľ	IaN			
grou	p											\		
var			DensSn	now_De	cTr Dens	Snow_	Grass	s Dens	Snow	_BSc	oil			

```
2010-01-01 00:05:00
                                     NaN
                                                     NaN
                                                                    NaN
     2010-01-01 00:10:00
                                                     NaN
                                     NaN
                                                                    NaN
                                                     NaN
     2010-01-01 00:15:00
                                     NaN
                                                                    NaN
     2010-01-01 00:20:00
                                                     NaN
                                                                    NaN
                                     NaN
     2010-01-01 00:25:00
                                     NaN
                                                     NaN
                                                                    NaN
group
var
                         DensSnow_Water a1 a2 a3
grid datetime
     2010-01-01 00:05:00
                                     Nan Nan Nan Nan
     2010-01-01 00:10:00
                                     Nan Nan Nan Nan
     2010-01-01 00:15:00
                                     Nan Nan Nan Nan
     2010-01-01 00:20:00
                                     Nan Nan Nan Nan
     2010-01-01 00:25:00
                                     Nan Nan Nan Nan
[5 rows x 371 columns]
```

Here we demonstrate several typical scenarios for SUEWS results examination.

The essential SUEWS output collection is extracted as a separate variable for easier processing in the following sections. More advanced slicing techniques are available in pandas documentation.

```
[23]: grid = df_state_amf.index[0]
    df_output_suews = df_output.loc[grid, 'SUEWS']
```

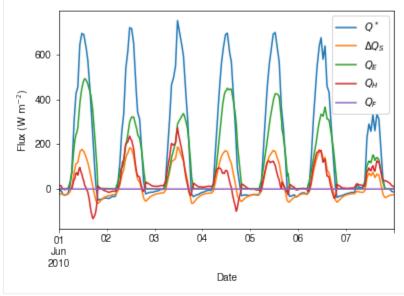
Statistics Calculation

We can use .describe() method for a quick overview of the key surface energy balance budgets.

```
[24]: df_output_suews.loc[:, ['QN', 'QS', 'QH', 'QE', 'QF']].describe()
[24]: var
                         QN
                                                         QH
                                                                         QE
                                                                                   QF
                                         QS
                                                                             105120.0
      count
             105120.000000
                             105120.000000
                                             105120.000000
                                                             105120.000000
                                                                                  0.0
                 118.207887
                                 19.047648
                                                 38.349672
                                                                 62.790798
      mean
      std
                 214.335328
                                 61.955598
                                                 85.050755
                                                                112.585643
                                                                                  0.0
               -104.566267
                                               -212.925432
                                                                                  0.0
      min
                                -81.170768
                                                                -15.483971
      25%
                 -33.437969
                                -23.174678
                                                -15.992876
                                                                  0.341017
                                                                                  0.0
                 -1.894385
                                                  9.862241
                                                                  3.042328
                                                                                  0.0
      50%
                                 -2.603727
      75%
                248.960723
                                 52.299898
                                                 68.130871
                                                                 65.272384
                                                                                  0.0
                749.868243
                                218.450452
                                                414.514498
                                                                559.472107
                                                                                  0.0
      max
```

Plotting

Basic example


Plotting is very straightforward via the .plot method bounded with pandas.DataFrame. Note the usage of loc for to slices of the output DataFrame.

```
"QN": "$Q^*$",
"QS": r"$\Delta Q_S$",
"QE": "$Q_E$",
"QH": "$Q_H$",
"QF": "$Q_F$",
"Kdown": r"$K_{\downarrow}$",
"Kup": r"$K_{\uparrow}$",
"Ldown": r"$L_{\downarrow}$",
"Lup": r"$L_{\uparrow}$",
"Rain": "$P$",
"Irr": "$1$",
"Evap": "$E$",
"RO": "$R$",
"TotCh": "$\Delta S$",
}
```

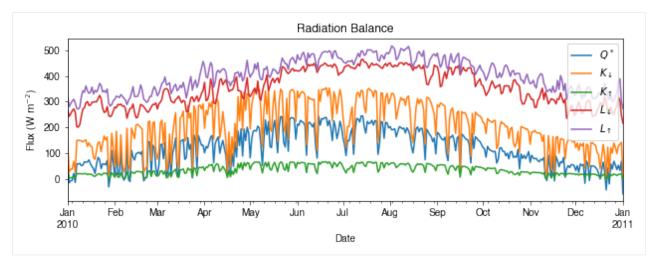
Peek at the simulation results:

```
[26]: grid = df_state_init.index[0]
```

```
[27]: ax_output = (
          df_output_suews.loc["2010-06-01":"2010-06-07", ["QN", "QS", "QE", "QH", "QF"]]
          .rename(columns=dict_var_disp)
          .plot()
)
_ = ax_output.set_xlabel("Date")
_ = ax_output.set_ylabel("Flux ($ \mathrm{W \ m^{-2}}$)")
_ = ax_output.legend()
```


Plotting after resampling

The suggested runtime/simulation frequency of SUEWS is 300 s, which usually results in a large output and may be over-weighted for storage and analysis. Also, you may feel an apparent slowdown in producing the above figure as a large amount of data were used for the plotting. To slim down the result size for analysis and output, we can resample the default output very easily.

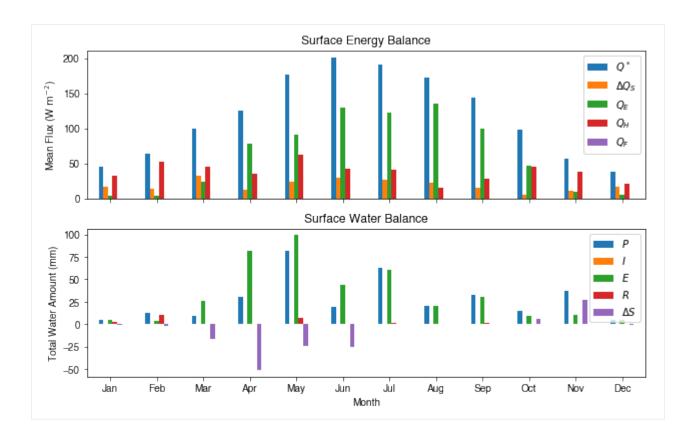

```
[28]: rsmp_1d = df_output_suews.resample("1d")
# daily mean values
df_1d_mean = rsmp_1d.mean()
# daily sum values
df_1d_sum = rsmp_1d.sum()
```

We can then re-examine the above energy balance at hourly scale and plotting will be significantly faster.

```
[29]: # energy balance
      ax_output = (
           df_1d_mean.loc[:, ["QN", "QS", "QE", "QH", "QF"]]
           .rename(columns=dict_var_disp)
            .plot(figsize=(10, 3), title="Surface Energy Balance",)
      )
         = ax_output.set_xlabel("Date")
         = ax_output.set_ylabel("Flux ($ \mathrm{W \ m^{-2}}}$)")
         = ax_output.legend()
                                                    Surface Energy Balance
           250
                                                                                                         0
           200
                                                                                                         \Delta Q_S
           150
                                                                                                         Q_E
        Flux (W m^{-2})
            100
            50
           -50
                      Feb
                             Mar
                                             May
                                                             Jul
                                                                             Sep
                                                                                     Oct
                                                                                             Νον
                                                                                                     Dec
              Jan
                                     Apr
                                                     Jun
                                                                     Aug
                                                                                                             Jan
             2010
                                                                                                            2011
                                                             Date
```

Then we use the hourly results for other analyses.

```
[30]: # radiation balance
ax_output = (
    df_1d_mean.loc[:, ["QN", "Kdown", "Kup", "Ldown", "Lup"]]
    .rename(columns=dict_var_disp)
    .plot(figsize=(10, 3), title="Radiation Balance",)
)
_ = ax_output.set_xlabel("Date")
_ = ax_output.set_ylabel("Flux ($ \mathrm{W \ m^{-2}}$)")
_ = ax_output.legend()
```




```
[31]: # water balance
      ax_output = (
           df_1d_sum.loc[:, ["Rain", "Irr", "Evap", "RO", "TotCh"]]
           .rename(columns=dict_var_disp)
           .plot(figsize=(10, 3), title="Surface Water Balance",)
      )
        = ax_output.set_xlabel("Date")
      _ = ax_output.set_ylabel("Water amount (mm)")
      _ = ax_output.legend()
                                                 Surface Water Balance
          30
          25
       Water amount (mm)
          20
          15
                                                                                                      ΔS
          10
           5
           0
          -5
                   Feb
                           Mar
                                   Apr
                                          May
                                                  Jun
                                                          Jul
                                                                 Aug
                                                                         Sep
                                                                                 Oct
                                                                                         Nov
                                                                                                Dec
                                                                                                        Jan
            Jan
           2010
                                                                                                        2011
                                                          Date
```

Get an overview of partitioning in energy and water balance at monthly scales:

```
[32]: # get a monthly Resampler
    df_plot = df_output_suews.copy()
    df_plot.index = df_plot.index.set_names("Month")
    rsmp_1M = df_plot.shift(-1).dropna(how="all").resample("1M", kind="period")
    # mean values
    df_1M_mean = rsmp_1M.mean()
    # sum values
    df_1M_sum = rsmp_1M.sum()
```

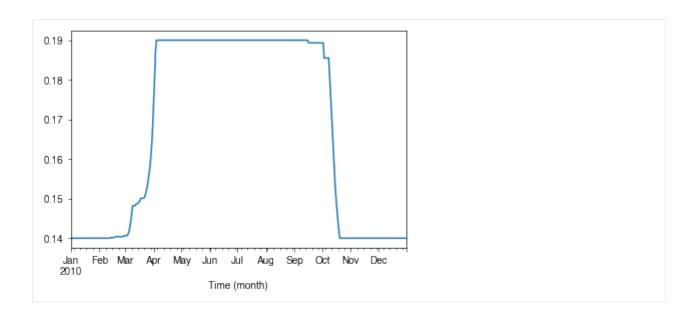
```
[33]: # month names
     name_mon = [x.strftime("%b") for x in rsmp_1M.groups]
     # create subplots showing two panels together
     fig, axes = plt.subplots(2, 1, sharex=True)
      # surface energy balance
     _ = (
         df_1M_mean.loc[:, ["QN", "QS", "QE", "QH", "QF"]]
          .rename(columns=dict_var_disp)
          .plot(
              ax=axes[0], # specify the axis for plotting
              figsize=(10, 6), # specify figure size
              title="Surface Energy Balance",
             kind="bar",
         )
     )
     # surface water balance
      _ = (
         df_1M_sum.loc[:, ["Rain", "Irr", "Evap", "RO", "TotCh"]]
          .rename(columns=dict_var_disp)
          .plot(
              ax=axes[1], # specify the axis for plotting
             title="Surface Water Balance",
             kind="bar",
         )
     )
     # annotations
      _= axes[0].set_ylabel("Mean Flux (\infty \m^{-2})")
      _{-} = axes[0].legend()
      _ = axes[1].set_xlabel("Month")
      _ = axes[1].set_ylabel("Total Water Amount (mm)")
     _ = axes[1].xaxis.set_ticklabels(name_mon, rotation=0)
     _{-} = axes[1].legend()
```


Save results to external files

The supy output can be saved as txt files for further analysis using supy function save_supy.

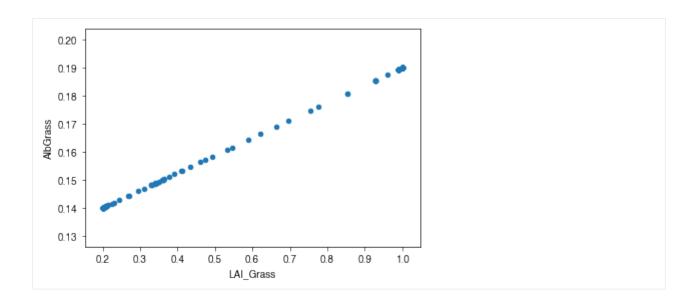
More explorations into simulation results

In this section, we will use the simulation results to explore more features revealed by SuPy/SUEWS simulations but *unavailable in your simple model*.


Dynamics in rainfall and soil moisture deficit (SMD)

```
[36]: df_dailystate = (
          df_output.loc[grid, "DailyState"].dropna(how="all").resample("1d").mean()
      )
[37]: # daily rainfall
      ser_p = df_dailystate.P_day.rename("Rainfall")
      ser_smd = df_output_suews.SMD
      ser_smd_dmax = ser_smd.resample("1d").max().rename("SMD")
      ax = pd.concat([ser_p, ser_smd_dmax], axis=1).plot(secondary_y="SMD", figsize=(9, 4))
      _ = ax.set_xlabel("Time (month)")
       30
                Rainfall
                                                                                           140
                SMD (right)
       25
                                                                                            120
       20
                                                                                           100
       15
                                                                                           80
       10
                                                                                           60
        5
                                                                                           40
        0
         Jan
                Feb
                      Mar
                             Apr
                                   May
                                          Jun
                                                 Jul
                                                       Aug
                                                              Sep
                                                                     Oct
                                                                           Nov
                                                                                  Dec
                                                                                         Jan
        2010
                                                                                        2011
                                             Time (month)
```

Variability in albedo


How does albedo change over time?

```
[38]: ser_alb = df_dailystate.AlbGrass
ax = ser_alb.plot()
_ = ax.set_xlabel("Time (month)")
```


How is albedo associated with vegetation phenology?

```
[39]: ser_lai = df_dailystate.LAI_Grass
      pd.concat([ser_lai, ser_alb], axis=1).plot(secondary_y="AlbGrass", figsize=(9, 4))
      ax = ser_lai.plot()
      _ = ax.set_xlabel("Time (month)")
[39]: <matplotlib.axes._subplots.AxesSubplot at 0x7f8969449978>
        1.0
                                                                                               0.19
                                                                                 LAI Grass
                                                                                 AlbGrass (right)
       0.9
                                                                                               0.18
       0.8
       0.7
                                                                                               0.17
       0.6
                                                                                               0.16
       0.5
       0.4
                                                                                               0.15
       0.3
       0.2
                                                                                               0.14
          Jan
                 Feb
                       Mar
                              Apr
                                     May
                                            Jun
                                                   Jul
                                                          Aug
                                                                 Sep
                                                                        Oct
                                                                               Nov
                                                                                      Dec
         2010
                                               Time (month)
```


Variability in surface resistance

How does surface resistance vary over time?

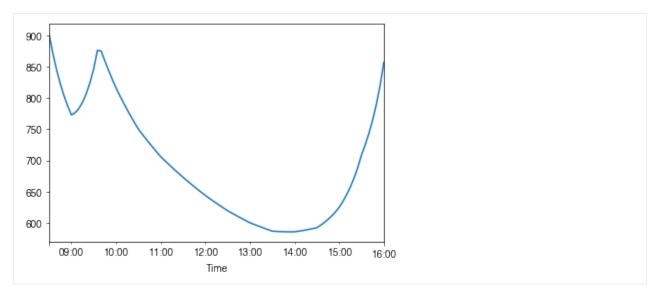
```
[41]: ser_rs = df_output_suews.RS
```

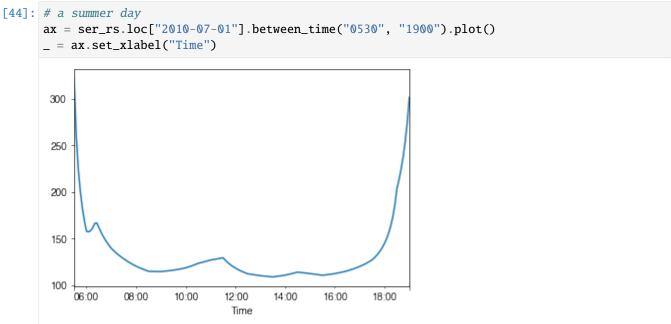
• intra-annual

```
[42]: ax = ser_rs.resample("1d").median().plot()
_ = ax.set_xlabel("Time (month)")

10000

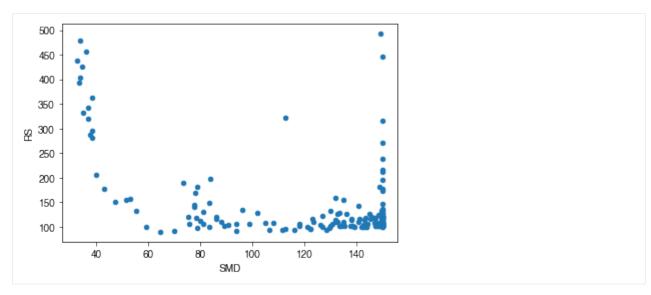
8000


4000


Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan 2010

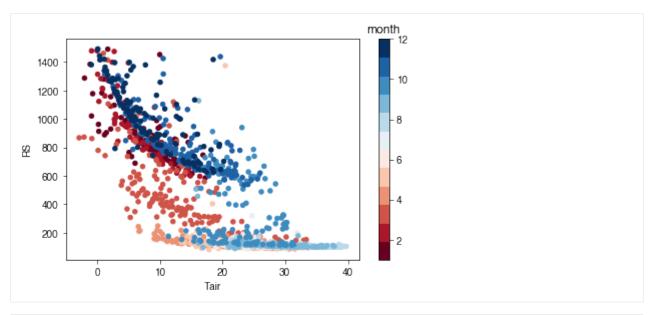
Time (month)
```

• intra-daily


```
[43]: # a winter day
ax = ser_rs.loc["2010-01-22"].between_time("0830", "1600").plot()
    _ = ax.set_xlabel("Time")
```


How is surface resistance associated with other surface properties?

```
[45]: # SMD
    ser_smd = df_output_suews.SMD
    df_x = (
        pd.concat([ser_smd, ser_rs], axis=1)
        .between_time("1000", "1600")
        .resample("1d")
        .mean()
)
    df_x = df_x.loc[df_x.RS < 500]
    _ = df_x.plot.scatter(x="SMD", y="RS",)</pre>
```




```
[46]: # LAI
      df_x = pd.concat(
           [ser_lai, ser_rs.between_time("1000", "1600").resample("1d").mean()], axis=1
      df_x = df_x.loc[df_x.RS < 500]
      _ = df_x.plot.scatter(x="LAI_Grass", y="RS",)
         500
          450
          400
         350
       ₩ 300
         250
         200
          150
          100
                   0.3
                          0.4
                                0.5
                                             0.7
                                                               1.0
             0.2
                                      0.6
                                                   8.0
                                                         0.9
                                     LAI_Grass
```

How is surface resistance dependent on meteorological conditions?

```
df_x = df_x.loc[df_x.RS < 1500]
df_plot = df_x.iloc[::20]
ax = df_plot.plot.scatter(x='kdown',
                            y='RS',
                             c=df_plot.index.month,
                             cmap=cmap_sel,
                             sharex=False)
fig = ax.figure
_ = fig.axes[1].set_title('month')
fig.tight_layout()
                                                       month
12
   1400
                                                             10
   1200
   1000
                                                            8
    800
82
                                                            6
    600
    400
    200
         0
                200
                         400
                                 600
                                         800
                                                  1000
                             kdown
```

```
[49]: # air temperature
      ser_ta = df_forcing_amf.Tair
      df_x = pd.concat([ser_ta, ser_rs], axis=1).between_time('1000', '1600')
      df_x = df_x.loc[df_x.RS < 1500]
      df_plot = df_x.iloc[::15]
      ax = df_plot.plot.scatter(x='Tair',
                                y='RS',
                                c=df_plot.index.month,
                                cmap=cmap_sel,
                                sharex=False)
      fig = ax.figure
      _ = fig.axes[1].set_title('month')
      fig.tight_layout()
```



```
[50]: # air humidity
      ser_rh = df_forcing_amf.RH
      df_x = pd.concat([ser_rh, ser_rs], axis=1).between_time('1000', '1600')
      df_x = df_x.loc[df_x.RS < 1500]
      df_plot = df_x.iloc[::15]
      ax = df_plot.plot.scatter(x='RH',
                                  y='RS',
                                  c=df_plot.index.month,
                                  cmap=cmap_sel,
                                  sharex=False)
      fig = ax.figure
      _ = fig.axes[1].set_title('month')
      fig.tight_layout()
                                                            month
12
         1400
                                                                 10
         1200
          1000
                                                                 8
       82
          800
                                                                 6
          600
          400
          200
                  20
                            40
                                     60
                                               80
                                                        100
                                   RH
```

• Task:

Based on the above plots showing RS vs. met. conditions, explore these relationships again at the intra-daily scales.

Note:

- 1. The Anaconda distribution is suggested as the scientific Python 3 environment for its completeness in necessary packages. Please follow the official guide for its installation.
- 2. Users with less experience in Python are suggested to go through the following section first before using SuPy.

Python 101 before SuPy

Admittedly, this header is somewhat misleading: given the enormity of Python, it's more challenging to get this section *correct* than coding SuPy per se. As such, here a collection of data analysis oriented links to useful Python resources is provided to help novices start using Python and **then** SuPy.

- The gist of Python: a quick introductory blog that covers Python basics for data analysis.
- Jupyter Notebook: Jupyter Notebook provides a powerful notebook-based data analysis environment that SuPy
 users are strongly encouraged to use. Jupyter notebooks can run in browsers (desktop, mobile) either by easy
 local configuration or on remote servers with pre-set environments (e.g., Google Colaboratory, Microsoft Azure
 Notebooks). In addition, Jupyter notebooks allow great shareability by incorporating source code and detailed
 notes in one place, which helps users to organise their computation work.
 - Installation

Jupyter notebooks can be installed with pip on any desktop/server system and open .ipynb notebook files locally:

```
python3 -m pip install jupyter -U
```

- Extensions: To empower your Jupyter Notebook environment with better productivity, please check out the Unofficial Jupyter Notebook Extensions. Quick introductory blogs can be found here and here.
- pandas: pandas is heavily used in SuPy and thus better understanding of pandas is essential in SuPy workflows.
 - Introductory blogs:
 - * Quick dive into Pandas for Data Science: introduction to pandas.
 - * Basic Time Series Manipulation with Pandas: pandas-based time series manipulation.
 - * Introduction to Data Visualization in Python: plotting using pandas and related libraries.
 - A detailed tutorial in Jupyter Notebooks:
 - * Introduction to pandas
 - * pandas fundamentals
 - * Data Wrangling with pandas

Key IO Data Structures in SuPy

Introduction

The cell below demonstrates a minimal case of SuPy simulation with all key IO data structures included:

```
[1]: import supy as sp
  df_state_init, df_forcing = sp.load_SampleData()
  df_output, df_state_final = sp.run_supy(df_forcing, df_state_init)
```

- Input: SuPy requires two DataFrames to perform a simulation, which are:
 - df_state_init: model initial states;
 - df_forcing: forcing data.

These input data can be loaded either through calling load_SampleData() as shown above or using init_supy. Or, based on the loaded sample DataFrames, you can modify the content to create new DataFrames for your specific needs.

- Output: The output data by SuPy consists of two DataFrames:
 - df_output: model output results; this is usually the basis for scientific analysis.
 - df_state_final: model final states; any of its entries can be used as a df_state_init to start another SuPy simulation.

Input

df_state_init: model initial states

```
[2]: df_state_init.head()
[2]: var
            ah min
                         ah_slope_cooling
                                                ah_slope_heating
                                                                      ahprof_24hr \
    ind_dim
              (0,)
                                      (0,) (1,)
                                                            (0,) (1,)
                   (1,)
                                                                           (0, 0)
    grid
    98
              15.0 15.0
                                       2.7 2.7
                                                             2.7
                                                                 2.7
                                                                             0.57
                                                                      ... tair24hr \
    ind_dim (0, 1) (1, 0) (1, 1) (2, 0) (2, 1) (3, 0) (3, 1) (4, 0)
                                                                            (275,)
    grid
    98
              0.65
                     0.45
                             0.49
                                    0.43
                                           0.46
                                                   0.4
                                                         0.47
                                                                 0.4
                                                                            273.15
    var
                                     (279,)
    ind_dim
             (276,) (277,)
                             (278.)
                                             (280,) (281,)
                                                              (282.)
                                                                      (283.)
    grid
                             273.15 273.15 273.15 273.15 273.15
    98
             273.15 273.15
                                             numcapita gridiv
    var
    ind_dim
             (284,)
                     (285,)
                             (286,)
                                      (287,)
    grid
    98
             273.15 273.15 273.15 273.15
                                                204.58
                                                           98
    [1 rows x 1200 columns]
```

df_state_init is organised with **grids** in **rows** and **their states** in **columns**. The details of all state variables can be found in *the description page*.

Please note the properties are stored as *flattened values* to fit into the tabular format due to the nature of DataFrame though they may actually be of higher dimension (e.g. ahprof_24hr with the dimension {24, 2}). To indicate the variable dimensionality of these properties, SuPy use the ind_dim level in columns for indices of values:

- 0 for scalars:
- (ind_dim1, ind_dim2, ...) for arrays (for a generic sense, vectors are 1D arrays).

Take ohm_coef below for example, it has a dimension of {8, 4, 3} according to the description, which implies the actual values used by SuPy in simulations are passed in a layout as an array of the dimension {8, 4, 3}. As such, to get proper values passed in, users should follow the dimensionality requirement to prepare/modify df_state_init.

df_state	_init.loc	[:,'ohm_coef']				
ind_dim grid	(0, 0, 0	(0, 0, 1)	(0, 0, 2)	(0, 1, 0) (0	, 1, 1) (0, 1, 2)	\
98	0.71	9 0.194	-36.6	0.719	0.194	-36.6	
ind_dim grid	(0, 2, 0	(0, 2, 1)	(0, 2, 2)	(0, 3, 0) (0	, 3, 1) (0, 3, 2)	\
98	0.71	9 0.194	-36.6	0.719	0.194	-36.6	
ind_dim grid	(1, 0, 0	(1, 0, 1)	(1, 0, 2)	(6, 3, 0)) (6, 3,	1) \	
98	0.23	8 0.427	-16.7	0.	5 0.	21	
ind_dim grid	(6, 3, 2	(7, 0, 0)	(7, 0, 1)	(7, 0, 2) (7	, 1, 0) (7, 1, 1)	\
98	-39.	1 0.25	0.6	-30.0	0.25	0.6	
ind_dim grid	(7, 1, 2	(7, 2, 0)	(7, 2, 1)	(7, 2, 2) (7	, 3, 0) (7, 3, 1)	\
98	-30.	0.25	0.6	-30.0	0.25	0.6	
ind_dim grid	(7, 3, 2)					
98	-30.	0					

df_forcing: forcing data

df_forcing is organised with **temporal records** in **rows** and **forcing variables** in **columns**. The details of all forcing variables can be found in *the description page*.

The missing values can be specified with -999s, which are the default NANs accepted by SuPy and its backend SUEWS.

```
[4]: df_forcing.head()
[4]:
                              id
                                 it
                                     imin
                                                     ah
                          iy
                                                            qe
                                                                  qs
    2012-01-01 00:05:00
                                        5 -999.0 -999.0 -999.0 -999.0
                        2012
                               1
                                  0
                                  0
                                       10 -999.0 -999.0 -999.0 -999.0
    2012-01-01 00:10:00
                        2012
                               1
    2012-01-01 00:15:00
                        2012
                               1
                                   0
                                       15 -999.0 -999.0 -999.0 -999.0
```

(continued from previous page) 2012-01-01 00:20:00 20 -999.0 -999.0 -999.0 -999.0 2012 1 0 2012-01-01 00:25:00 2012 25 -999.0 -999.0 -999.0 -999.0 1 0 U RH Tair pres rain kdown \ 2012-01-01 00:05:00 4.515 85.463333 11.77375 0.0 0.153333 1001.5125 2012-01-01 00:10:00 4.515 85.463333 11.77375 1001.5125 0.0 0.153333 2012-01-01 00:15:00 4.515 85.463333 11.77375 1001.5125 0.0 0.153333 2012-01-01 00:20:00 4.515 85.463333 11.77375 1001.5125 0.0 0.153333 11.77375 2012-01-01 00:25:00 4.515 85.463333 1001.5125 0.0 0.153333 fc1d lai kdiff snow ldown Wuh xsmd kdir 2012-01-01 00:05:00 -999.0 -999.0 -999.0 -999.0 -999.0 -999.0 -999.0 -999.0 2012-01-01 00:10:00 -999.0 -999.0 -999.0 -999.0 -999.0 -999.0 -999.0 -999.0 2012-01-01 00:15:00 -999.0 -999.0 -999.0 -999.0 -999.0 -999.0 -999.0 -999.0 2012-01-01 00:20:00 -999.0 -999.0 -999.0 -999.0 -999.0 -999.0 -999.0 -999.0 2012-01-01 00:25:00 -999.0 -999.0 -999.0 -999.0 -999.0 -999.0 -999.0 -999.0 wdir isec 2012-01-01 00:05:00 -999.0 0.0 2012-01-01 00:10:00 -999.0 0.0 2012-01-01 00:15:00 -999.0 0.0 2012-01-01 00:20:00 -999.0 0.0 2012-01-01 00:25:00 -999.0 0.0

Note:

The index of df_forcing **SHOULD BE** strictly of DatetimeIndex type if you want create a df_forcing for SuPy simulation. The SuPy runtime time-step size is instructed by the df_forcing with its index information.

The infomation below indicates SuPy will run at a 5 min (i.e. 300 s) time-step if driven by this specific df_forcing:

```
[5]: freq_forcing=df_forcing.index.freq
    freq_forcing
[5]: <300 * Seconds>
```

Output

df_output: model output results

df_output is organised with **temporal records of grids** in **rows** and **output variables of different groups** in **columns**. The details of all forcing variables can be found in *the description page*.

```
[6]: df_output.head()
[6]: group
                                    SUEWS
                                                            Ldown
                                    Kdown
                                                 Kup
     var
                                                                           Lup
     grid datetime
          2012-01-01 00:05:00
                                 0.153333
                                            0.018279
                                                       344.310184
                                                                    371.986259
          2012-01-01 00:10:00
                                 0.153333
                                            0.018279
                                                       344.310184
                                                                    371.986259
                                                                                      (continues on next page)
```

(continued from previous page) 2012-01-01 00:15:00 0.153333 0.018279 344.310184 371.986259 2012-01-01 00:20:00 0.153333 0.018279 344.310184 371.986259 2012-01-01 00:25:00 0.153333 0.018279 344.310184 371.986259 group var Tsurf QN QF QS grid datetime 2012-01-01 00:05:00 11.775615 -27.541021 40.574001 -46.53243 2012-01-01 00:10:00 11.775615 -27.541021 39.724283 -46.53243 2012-01-01 00:15:00 11.775615 -27.541021 38.874566 -46.53243 2012-01-01 00:20:00 11.775615 -27.541021 38.024849 -46.53243 2012-01-01 00:25:00 11.775615 -27.541021 37.175131 -46.53243 group QE QElumps QHresis QH QHlumps var grid datetime 2012-01-01 00:05:00 62.420064 3.576493 49.732605 9.832804 0.042327 2012-01-01 00:10:00 61.654096 3.492744 48.980360 9.735333 0.042294 2012-01-01 00:15:00 60.885968 3.411154 48.228114 9.637861 0.042260 2012-01-01 00:20:00 60.115745 3.331660 47.475869 9.540389 0.042226 2012-01-01 00:25:00 59.343488 3.254200 46.723623 9.442917 0.042192 group ... DailyState WU_Grass2 WU_Grass3 deltaLAI var Rain Irr grid datetime . . . 2012-01-01 00:05:00 NaN NaN 0.0 0.0 NaN 2012-01-01 00:10:00 0.0 0.0 NaN NaN NaN . . . 2012-01-01 00:15:00 0.0 0.0 NaN NaN NaN 2012-01-01 00:20:00 0.0 0.0 NaN NaN NaN 2012-01-01 00:25:00 0.0 0.0 NaN NaN NaN group var LAIlumps AlbSnow DensSnow_Paved DensSnow_Bldgs grid datetime 2012-01-01 00:05:00 NaN NaN NaN NaN NaN NaN NaN 2012-01-01 00:10:00 NaN NaN NaN 2012-01-01 00:15:00 NaN NaN 2012-01-01 00:20:00 NaN NaN NaN NaN 2012-01-01 00:25:00 NaN NaN NaN NaN group DensSnow_EveTr DensSnow_DecTr DensSnow_Grass var grid datetime 2012-01-01 00:05:00 NaN NaN NaN 2012-01-01 00:10:00 NaN NaN NaN 2012-01-01 00:15:00 NaN NaN NaN 2012-01-01 00:20:00 NaN NaN NaN 2012-01-01 00:25:00 NaN NaN NaN group var DensSnow_BSoil DensSnow_Water a1 a2 a3 grid datetime

```
98
     2012-01-01 00:05:00
                                                     Nan Nan Nan Nan
                                     NaN
     2012-01-01 00:10:00
                                                     Nan Nan Nan Nan
                                     NaN
                                                     Nan Nan Nan Nan
     2012-01-01 00:15:00
                                     NaN
     2012-01-01 00:20:00
                                                     Nan Nan Nan Nan
                                     NaN
     2012-01-01 00:25:00
                                     NaN
                                                     Nan Nan Nan Nan
[5 rows x 218 columns]
```

df_output are recorded at the same temporal resolution as df_forcing:

```
[7]: freq_out = df_output.index.levels[1].freq
    (freq_out, freq_out == freq_forcing)
[7]: (<300 * Seconds>, True)
```

df_state_final: model final states

df_state_final has the identical data structure as df_state_init except for the extra level datetime in index, which stores the temporal information associated with model states. Such structure can facilitate the reuse of it as initial model states for other simulations (e.g., diagnostics of runtime model states with save_state=True set in run_supy; or simply using it as the initial conditions for future simulations starting at the ending times of previous runs).

The meanings of state variables in df_state_final can be found in the description page.

```
[8]: df_state_final.head()
                               aerodynamicresistancemethod ah_min
[8]: var
    ind_dim
                                                              (0.)
                                                                    (1,)
    datetime
                         grid
    2012-01-01 00:05:00 98
                                                          2
                                                              15.0 15.0
    2013-01-01 00:05:00 98
                                                          2
                                                                   15.0
                                                              15.0
    var
                               ah_slope_cooling
                                                      ah_slope_heating
    ind dim
                                           (0,) (1,)
                                                                  (0,) (1,)
                         grid
    datetime
    2012-01-01 00:05:00 98
                                            2.7
                                                 2.7
                                                                   2.7
                                                                        2.7
    2013-01-01 00:05:00 98
                                            2.7 2.7
                                                                   2.7
                                                                        2.7
    var
                               ahprof_24hr
    ind_dim
                                    (0, 0) (0, 1) (1, 0) (1, 1) (2, 0) (2, 1)
    datetime
                         grid
    2012-01-01 00:05:00 98
                                                                   0.43
                                                                           0.46
                                      0.57
                                             0.65
                                                     0.45
                                                            0.49
    2013-01-01 00:05:00 98
                                      0.57
                                             0.65
                                                     0.45
                                                            0.49
                                                                    0.43
                                                                           0.46
                                               ... wuprofm_24hr
    var
    ind_dim
                               (3, 0) (3, 1)
                                                        (18, 0) (18, 1) (19, 0)
                          grid
    datetime
    2012-01-01 00:05:00 98
                                                         -999.0
                                                                -999.0 -999.0
                                  0.4
                                        0.47
    2013-01-01 00:05:00 98
                                  0.4
                                        0.47
                                                         -999.0
                                                                 -999.0
                                                                         -999.0
                                              . . .
    var
                               (19, 1) (20, 0) (20, 1) (21, 0) (21, 1) (22, 0)
    ind_dim
```

datetime		grid						
2012-01-01	00:05:00	98	-999 .0	-999.0	-999.0	-999.0	-999.0	-999.0
2013-01-01	00:05:00	98	-999.0	-999.0	-999.0	-999.0	-999.0	-999.0
var						z z0	m_in zd	lm_in
ind_dim			(22, 1)	(23, 0)	(23, 1)	0	0	0
datetime		grid						
2012-01-01	00:05:00	98	-999.0	-999.0	-999.0	49.6	1.9	14.2
2013-01-01	00:05:00	98	-999.0	-999.0	-999.0	49.6	1.9	14.2
[2 rows x 3	1200 colum	ms]						

API reference

Top-level Functions

<pre>init_supy(path_init[, force_reload, check_input])</pre>	Initialise supy by loading initial model states.					
load_forcing_grid(path_runcontrol, grid[,])	Load forcing data for a specific grid included in the index					
	of df_state_init.					
run_supy(df_forcing, df_state_init[,])	Perform supy simulation.					
save_supy(df_output, df_state_final[,])	Save SuPy run results to files					
load_SampleData()	Load sample data for quickly starting a demo run.					
show_version([mode, as_json])	print <i>SuPy</i> and supy_driver version information.					

supy.init_supy

supy.init_supy($path_init: str, force_reload=True, check_input=False$) \rightarrow pandas.core.frame.DataFrame Initialise supy by loading initial model states.

path_init [str]

Path to a file that can initialise SuPy, which can be either of the follows:

- SUEWS RunControl.nml: a namelist file for SUEWS configurations
- SuPy df_state.csv: a CSV file including model states produced by a SuPy run via supy. save_supy()

force_reload: boolean, optional Flag to force reload all initialisation files by clearing all cached states, with default value True (i.e., force reload all files). Note: If the number of simulation grids is large (e.g., > 100), force_reload=False is strongly recommended for better performance.

check_input: boolean, optional flag for checking validity of input: df_forcing and df_state_init. If set to True, any detected invalid input will stop SuPy simulation; a False flag will bypass such validation and may incur kernel error if any invalid input. *Note: such checking procedure may take some time if the input is large.* (the default is False, which bypasses the validation).

df_state_init: pandas.DataFrame Initial model states. See *df_state variables* for details.

1. Use RunControl.nml to initialise SuPy

```
>>> path_init = "~/SUEWS_sims/RunControl.nml"
>>> df_state_init = supy.init_supy(path_init)
```

2. Use df_state.csv to initialise SuPy

```
>>> path_init = "~/SuPy_res/df_state_test.csv"
>>> df_state_init = supy.init_supy(path_init)
```

supy.load forcing grid

```
supy. load\_forcing\_grid(path\_runcontrol: str, grid: int, check\_input=False, force\_reload=True) \rightarrow pandas.core.frame. DataFrame
```

Load forcing data for a specific grid included in the index of df_state_init.

path_runcontrol [str] Path to SUEWS RunControl.nml

grid [int] Grid number

check_input [bool, optional] flag for checking validity of input: df_forcing and df_state_init. If set to True, any detected invalid input will stop SuPy simulation; a False flag will bypass such validation and may incur kernel error if any invalid input. *Note: such checking procedure may take some time if the input is large.* (the default is False, which bypasses the validation).

df_forcing: pandas.DataFrame Forcing data. See *df_forcing variables* for details.

supy.run_supy

```
supy.run_supy(df_forcing: pandas.core.frame.DataFrame, df_state_init: pandas.core.frame.DataFrame, save_state=False, chunk_day=3660, logging_level=20, check_input=False, serial_mode=False)

→ Tuple[pandas.core.frame.DataFrame, pandas.core.frame.DataFrame]
```

Perform supy simulation.

df_forcing [pandas.DataFrame] forcing data for all grids in df_state_init.

- **df_state_init** [pandas.DataFrame] initial model states; or a collection of model states with multiple timestamps, whose last temporal record will be used as the initial model states.
- **save_state** [bool, optional] flag for saving model states at each time step, which can be useful in diagnosing model runtime performance or performing a restart run. (the default is False, which instructs supy not to save runtime model states).
- **chunk_day** [int, optional] chunk size (**chunk_day** days) to split simulation periods so memory usage can be reduced. (the default is 3660, which implies ~10-year forcing chunks used in simulations).
- **logging_level:** logging level one of these values [50 (CRITICAL), 40 (ERROR), 30 (WARNING), 20 (INFO), 10 (DEBUG)]. A lower value informs SuPy for more verbose logging info.

- check_input [bool, optional] flag for checking validity of input: df_forcing and df_state_init. If set to True, any detected invalid input will stop SuPy simulation; a False flag will bypass such validation and may incur kernel error if any invalid input. Note: such checking procedure may take some time if the input is large. (the default is False, which bypasses the validation).
- **serial_mode** [bool, optional] If set to True, SuPy simulation will be conducted in serial mode; a False flag will try parallel simulation if possible (Windows not supported, i.e., always serial). (the default is False).

df output, df state final [Tuple[pandas.DataFrame, pandas.DataFrame]]

- df_output: output results
- df_state_final: final model states

```
>>> df_output, df_state_final = supy.run_supy(df_forcing, df_state_init)
```

supy.save_supy

supy.save_supy(df_output: pandas.core.frame.DataFrame, df_state_final: pandas.core.frame.DataFrame, freq_s: int = 3600, site: str = '', $path_dir_save$: str = PosixPath('.'), $path_runcontrol$: str = None, save tstep=False, logging level=50, output level=1, debug=False) \rightarrow list

Save SuPy run results to files

df_output [pandas.DataFrame] DataFrame of output

df_state_final [pandas.DataFrame] DataFrame of final model states

freq_s [int, optional] Output frequency in seconds (the default is 3600, which indicates hourly output)

site [str, optional] Site identifier (the default is ", which indicates site identifier will be left empty)

- path_dir_save [str, optional] Path to directory to saving the files (the default is Path('.'), which indicates the current working directory)
- path_runcontrol [str, optional] Path to SUEWS RunControl.nml, which, if set, will be preferably used to derive freq_s, site and path_dir_save. (the default is None, which is unset)
- **save_tstep** [bool, optional] whether to save results in temporal resolution as in simulation (which may result very large files and slow progress), by default False.
- **logging_level:** logging level one of these values [50 (CRITICAL), 40 (ERROR), 30 (WARNING), 20 (INFO), 10 (DEBUG)]. A lower value informs SuPy for more verbose logging info.
- **output_level** [integer, optional] option to determine selection of output variables, by default 1. Notes: 0 for all but snow-related; 1 for all; 2 for a minimal set without land cover specific information.
- **debug** [bool, optional] whether to enable debug mode (e.g., writing out in serial mode, and other debug uses), by default False.

list a list of paths of saved files

1. save results of a supy run to the current working directory with default settings

```
>>> list_path_save = supy.save_supy(df_output, df_state_final)
```

2. save results according to settings in RunControl.nml

3. save results of a supy run at resampling frequency of 1800 s (i.e., half-hourly results) under the site code Test to a customised location 'path/to/some/dir'

```
>>> list_path_save = supy.save_supy(df_output, df_state_final, freq_s=1800, site=

-'Test', path_dir_save='path/to/some/dir')
```

supy.load_SampleData

supy.load_SampleData() → Tuple[pandas.core.frame.DataFrame, pandas.core.frame.DataFrame]

Load sample data for quickly starting a demo run.

df_state_init, df_forcing: Tuple[pandas.DataFrame, pandas.DataFrame]

- df_state_init: initial model states
- df_forcing: forcing data

```
>>> df_state_init, df_forcing = supy.load_SampleData()
```

supy.show_version

```
supy.show_version(mode='simple', as_json=False) print SuPy and supy_driver version information.
```

Utility Functions

ERA-5 Data Downloader

download_era5(lat_x, lon_x, start, end,)	Generate ERA-5 cdsapi-based requests and download data for area of interests.
gen_forcing_era5(lat_x, lon_x, start, end[,])	Generate SUEWS forcing files using ERA-5 data.

supy.util.download_era5

```
supy.util. \textbf{download\_era5}(\textit{lat\_x: float, lon\_x: float, start: str, end: str, simple\_mode: bool,} \\ \textit{dir\_save=PosixPath('.'), grid=None, scale=0, logging\_level=20)} \rightarrow dict
```

Generate ERA-5 cdsapi-based requests and download data for area of interests.

 lat_x [float] Latitude of centre at the area of interest.

lon_x [float] Longitude of centre at the area of interest.

start [str] Any datetime-like string that can be parsed by pandas.daterange().

end [str] Any datetime-like string that can be parsed by pandas.daterange().

grid [list, optional] grid size used in CDS request API, by default [0.125, 0.125].

scale [int, optional] scaling factor that determines the area of interest (i.e., area=grid[0]*scale), by default
0.

dir_save: Path or path-like string path to directory for saving downloaded ERA5 netCDF files.

logging_level: logging level one of these values [50 (CRITICAL), 40 (ERROR), 30 (WARNING), 20 (INFO), 10 (DEBUG)]. A lower value informs SuPy for more verbose logging info.

dict key: name of downloaded file. value: CDS API request used for downloading the file named by the corresponding key.

This function uses CDS API to download ERA5 data; follow this for configuration first: https://cds.climate.copernicus.eu/api-how-to

supy.util.gen_forcing_era5

supy.util.gen_forcing_era5(lat_x : float, lon_x : float, start: str, end: str, $dir_save = PosixPath('.')$, grid = None, lon_x : lon_x :

Generate SUEWS forcing files using ERA-5 data.

lat_x [float] Latitude of centre at the area of interest.

lon_x [float] Longitude of centre at the area of interest.

start [str] Any datetime-like string that can be parsed by pandas.daterange().

end [str] Any datetime-like string that can be parsed by pandas.daterange().

dir_save: Path or path-like string path to directory for saving downloaded ERA5 netCDF files.

grid [list, optional] grid size used in CDS request API, by default [0.125, 0.125].

hgt_agl_diag: float height above ground level to diagnose forcing variables, by default 100; the ground level is taken from ERA5 grid altitude.

scale [int, optional] scaling factor that determines the area of interest (i.e., area=grid[0]*scale), by default
0

force_download: boolean, optional flag to determine whether to download required ERA5 netCDF files; if False, all ERA5-related nc files in dir_save will be picked up for generation. by default True.

simple_mode: boolean if use the *simple* mode for diagnosing the forcing variables, by default True. In the simple mode, temperature is diagnosed using environmental lapse rate 6.5 K/km and wind speed using MOST under neutral condition. If False, MOST with consideration of stability conditions will be used to diagnose forcing variables.

pressure_level: float pressure level to retrieve ERA5 atmospheric data, by default None. If None, this option is ignored. If not None, calculations implied by simple_mode will be skipped: the data at specified pressure level will be used as forcing data and the mean altitude of the pressure level between specified start and end will be assumed to be the forcing height (i.e., hgt_agl_diag will be ignored if set).

logging_level: logging level one of these values [50 (CRITICAL), 40 (ERROR), 30 (WARNING), 20 (INFO), 10 (DEBUG)]. A lower value informs SuPy for more verbose logging info.

List A list of files in SUEWS forcing input format.

1. This function uses CDS API to download ERA5 data; follow this for configuration first: https://cds.climate.copernicus.eu/api-how-to

- 2. The generated forcing files can be imported using supy.util.read_forcing to get simulation-ready `pandas.DataFrame`s.
- 3. See Section 3.10.2 and 3.10.3 in the reference for details of diagnostics calculation.
- 4. For start/end, it is recommended to use the format YYYY-MM-DD to avoid confusion in day/month-first convensions (an upstream known issue due to the dateutil behavior)

ECMWF, S. P. (2016). In IFS documentation CY41R2 Part IV: Physical Processes. ECMWF: Reading, UK, 111-113. https://www.ecmwf.int/en/elibrary/16648-part-iv-physical-processes

Typical Meteorological Year

<pre>gen_epw(df_output, lat, lon[, tz, path_epw])</pre>	Generate an epw file of uTMY (urbanised Typical Me-
	teorological Year) using SUEWS simulation results
read_epw(path_epw)	Read in epw file as a DataFrame

supy.util.gen_epw

supy.util.gen_epw(df_output: pandas.core.frame.DataFrame, lat, lon, tz=0, path_epw=PosixPath('uTMY.epw')) \rightarrow Tuple[pandas.core.frame.DataFrame, str, pathlib.Path]

Generate an epw file of uTMY (urbanised Typical Meteorological Year) using SUEWS simulation results

df_output [pd.DataFrame] SUEWS simulation results.

path_epw [Path, optional] Path to store generated epw file, by default Path('./uTMY.epw').

lat: float Latitude of the site, used for calculating solar angle.

lon: float Longitude of the site, used for calculating solar angle.

tz: float time zone represented by time difference from UTC+0 (e.g., 8 for UTC+8), by default 0 (i.e., UTC+0)

df_epw, text_meta, path_epw: Tuple[pd.DataFrame, str, Path]

• df_epw: uTMY result

· text_meta: meta-info text

• path_epw: path to generated epw file

supy.util.read epw

```
\verb"supy.util.read_epw" (path\_epw: pathlib.Path) \to \verb"pandas.core.frame.DataFrame"
```

Read in epw file as a DataFrame

path_epw [Path] path to epw file

df_tmy: pd.DataFrame TMY results of epw file

Gap Filling

fill_gap_all(ser_to_fill[, freq,])	Fill all gaps in a time series using data from neighbour-
	ing divisions of 'freq'

supy.util.fill_gap_all

supy.util.fill_gap_all(ser_to_fill: pandas.core.series.Series, freq='1D', limit_fill=1, thresh_ratio=0.8) \rightarrow pandas.core.series.Series

Fill all gaps in a time series using data from neighbouring divisions of 'freq'

ser_to_fill [pd.Series] Time series to gap-fill

freq [str, optional] Frequency to identify gapped divisions, by default '1D'

limit_fill: int, optional Maximum number of consecutive NaNs to fill. Any number less than one means no pre-gap-filling interpolation will be done.

ser_test_filled: pd.Series Gap-filled time series.

010: missing data in division between others with no missing data 01: missing data in division after one with no missing data 10: division with missing data before one with no missing data

OHM

<pre>derive_ohm_coef(ser_QS, ser_QN)</pre>	A function to linearly fit two independant variables to a
	dependent one.
sim_ohm(ser_qn, a1, a2, a3)	Calculate QS using OHM (Objective Hysteresis Model).

supy.util.derive_ohm_coef

supy.util.derive_ohm_coef(ser_QS, ser_QN)

A function to linearly fit two independant variables to a dependent one.

ser_QS [pd.Series] The dependent variable QS (Surface heat storage).

ser QN [pd.Series] The first independent variable (Net all wave radiation).

Tuple a1, a2 coefficients and a3 (intercept)

supy.util.sim ohm

supy.util.sim_ohm($ser_qn: pandas.core.series.Series, a1: float, a2: float, a3: float) <math>\rightarrow$ pandas.core.series.Series Calculate QS using OHM (Objective Hysteresis Model).

ser_qn [pd.Series] net all-wave radiation.

- **a1** [float] al of OHM coefficients.
- a2 [float] a2 of OHM coefficients.

a3 [float] a3 of OHM coefficients.

pd.Series heat storage flux calculated by OHM.

Surface Conductance

cal_gs_suews(kd, ta_c, rh, pa, smd, lai,)	Model surface conductance/resistance using phenology
	and atmospheric forcing conditions.
cal_gs_obs(qh, qe, ta, rh, pa, ra)	Calculate surface conductance based on observations,
	notably turbulent fluxes.
calib_g(df_fc_suews, ser_ra, g_max, lai_max,)	Calibrate parameters for modelling surface conductance
	over vegetated surfaces using LMFIT.

supy.util.cal_gs_suews

supy.util.cal_gs_suews(kd, ta_c, rh, pa, smd, lai, g_cst, g_max, lai_max, wp_smd, debug=False)

Model surface conductance/resistance using phenology and atmospheric forcing conditions.

kd [numeric] Incoming solar radiation [W m-2]

ta_c [numeric] Air temperature [degC]

rh [numeric] Relative humidity [%]

pa [numeric] Air pressure [Pa]

smd [numeric] Soil moisture deficit [mm]

lai [numeric] Leaf area index [m2 m-2]

g_cst [size-6 array] Parameters to determine surface conductance/resistance: g_lai (LAI related), g_kd (solar radiation related), g_dq_base (humidity related), g_dq_shape (humidity related), g_ta (air temperature related), g_smd (soil moisture related)

g_max [numeric] Maximum surface conductance [mm s-1]

lai_max [numeric] Maximum LAI [m2 m-2]

wp_smd [numeric] Wilting point indicated as soil moisture deficit [mm]

numeric Modelled surface conductance [mm s-1]

supy.util.cal_gs_obs

```
supy.util.cal_gs_obs(qh, qe, ta, rh, pa, ra)
```

Calculate surface conductance based on observations, notably turbulent fluxes.

qh [numeric] Sensible heat flux [W m-2]

qe [numeric] Latent heat flux [W m-2]

ta [numeric] Air temperature [degC]

rh [numeric] Relative humidity [%]

pa [numeric] Air pressure [Pa]

numeric Surface conductance based on observations [mm s-1]

supy.util.calib_g

supy.util.calib_g(df_fc_suews, ser_ra, g_max, lai_max, wp_smd, method='cobyla', prms_init=None, debug=False)

Calibrate parameters for modelling surface conductance over vegetated surfaces using LMFIT.

df_fc_suews [pandas.DataFrame] DataFrame in SuPy forcing format

ser_ra: pandas.Series Series with RA, aerodynamic resistance, [s m-1]

g_max [numeric] Maximum surface conductance [mm s-1]

lai_max [numeric] Maximum LAI [m2 m-2]

wp_smd [numeric] Wilting point indicated as soil moisture deficit [mm]

method: str, optional Method used in minimisation by lmfit.minimize: details refer to its method.

prms_init: lmfit.Parameters, optional Initial parameters for calibration

debug [bool, optional] Option to output final calibrated ModelResult, by default False

dict, or ModelResult if debug==True

- 1. dict: {parameter_name -> best_fit_value}
- 2. ModelResult

Note: Parameters for surface conductance: g_lai (LAI related), g2 (solar radiation related), g_dq_base (humidity related), g_dq_shape (humidity related), g_ta (air temperature related), g_smd (soil moisture related)

For calibration validity, turbulent fluxes, QH and QE, in df_fc_suews should ONLY be observations, i.e., interpolated values should be avoided. To do so, please place np.nan as missing values for QH and QE.

WRF-SUEWS

<pre>extract_reclassification(path_nml)</pre>	Extract reclassification info from path_nml as a
	DataFrame.
<pre>plot_reclassification(path_nml[, path_save,])</pre>	Produce Sankey Diagram to visualise the reclassification
	specified in path_nml

supy.util.extract_reclassification

 $supy.util.extract_reclassification(path_nml: str) \rightarrow pandas.core.frame.DataFrame$

Extract reclassification info from path_nml as a DataFrame.

path_nml [str] Path to namelist.suews

pd.DataFrame Reclassification DataFrame with rows for WRF land covers while columns for SUEWS.

supy.util.plot reclassification

supy.util.plot_reclassification(path_nml: str, path_save='LC-WRF-SUEWS.png', width=800, height=360, top=10, bottom=10, left=280, right=130)

Produce Sankey Diagram to visualise the reclassification specified in path_nml

path_nml [str] Path to namelist.suews

path_save [str, optional] Path to save Sankey diagram, by default 'LC-WRF-SUEWS.png'

width [int, optional] Width of diagram, by default 800

height [int, optional] Height of diagram, by default 360

top [int, optional] Top margin of diagram, by default 10

bottom [int, optional] Bottom margin of diagram, by default 10

left [int, optional] Left margin of diagram, by default 260

right [int, optional] Right margin of diagram, by default 60

Sankey Diagram Sankey Diagram showing the reclassification.

Plotting

<pre>plot_comp(df_var[, scatter_kws, kde_kws,])</pre>	Produce a scatter plot with linear regression line to com-
	pare simulation results and observations.
<pre>plot_day_clm(df_var[, fig, ax, show_dif,])</pre>	Produce a ensemble diurnal climatologies with uncer-
	tainties shown in inter-quartile ranges.
<pre>plot_rsl(df_output[, var, fig, ax])</pre>	Produce a quick plot of RSL results

supy.util.plot comp

supy.util.plot_comp(df_var, scatter_kws={'alpha': 0.1, 'color': 'k', 's': 0.3}, kde_kws={'levels': 4, 'shade': True, 'shade_lowest': False}, show_pdf=False, fig=None, ax=None)

Produce a scatter plot with linear regression line to compare simulation results and observations.

df_var [pd.DataFrame] DataFrame containing variables to plot with datetime as index. Two columns, 'Obs' and 'Sim' for observations and simulation results, respectively, must exist.

show_pdf: boolean if a PDF overlay should be added. By default, False.

kde_kws: dict kde_kws passed to sns.kdeplot when show_pdf=True

MPL.figure figure showing 1:1 line plot

supy.util.plot day clm

supy.util.plot_day_clm(df_var, fig=None, ax=None, show_dif=False, col_ref='Obs')

Produce a ensemble diurnal climatologies with uncertainties shown in inter-quartile ranges.

df_var [pd.DataFrame] DataFrame containing variables to plot with datetime as index.

show_dif: boolean flag to determine if differences against col_ref should be plotted.

col_ref: str name of column that is used as reference to show differences instead of original values.

MPL.figure figure showing median lines and IQR in shadings

supy.util.plot rsl

supy.util.plot_rsl(df_output, var=None, fig=None, ax=None)

Produce a quick plot of RSL results

df_output [pandas.DataFrame] SuPy output dataframe with RSL results.

var [str, optional] Varible to plot; must be one of 'U', 'T', or 'q'; or use None to plot all; by default None

tuple (fig, ax) of plot.

issue If an invalid variable is specified, an issue will be raised.

Roughness Calculation

cal_z0zd(ser_qh, ser_ustar, ser_ta_c,[,])	Calculates surface roughness and zero plane displace-
	ment height.
cal_neutral(ser_qh, ser_ustar, ser_ta_c,)	Calculates the rows associated with neutral condition
	(threshold=0.01)

supy.util.cal z0zd

supy.util.cal_z0zd(ser_qh, ser_ustar, ser_ta_c, ser_rh_pct, ser_pres_hpa, ser_ws, z_meas, h_sfc, debug=False)

Calculates surface roughness and zero plane displacement height. Refer to https://suews-parameters-docs.readthedocs.io/en/latest/steps/roughness-SuPy.html for example

ser_qh: pd.DataFrame sensible heat flux [W/m^2]

ser_ustar: pd.Series friction velocity [m/s]

ser_ta_c: pd.Series air temperature [°C]

ser_rh_pct: pd.Series relative humidity [%]

ser_pres_hpa: pd.Series air pressure [hPa]

z_meas: number measurement height in m

h_sfc: number vegetation height in m

debug [bool, optional] Option to output final calibrated ModelResult, by default False

```
z0 surface roughness length for momentumzd zero displacement height
```

supy.util.cal neutral

```
supy.util.cal_neutral(ser_qh, ser_ustar, ser_ta_c, ser_rh_pct, ser_pres_hpa, ser_ws, z_meas, h_sfc)
Calculates the rows associated with neutral condition (threshold=0.01)
ser_qh: pd.DataFrame sensible heat flux [W/m^2]
ser_ustar: pd.Series friction velocity [m/s]
ser_ta_c: pd.Series air temperature [°C]
ser_rh_pct: pd.Series relative humidity [%]
ser_pres_hpa: pd.Series air pressure [hPa]
ser_ws: pd.Series wind speed [m/s]
z_meas measurement height [m]
h_sfc vegetation height [m]
ser_ws_neutral: pd.Series observation time series of WS (Neutral conditions)
ser_ustar_neutral: pd.Series observation time series of u* (Neutral conditions)
```

Command-Line Tools

suews-run

Run SUEWS simulation using settings in PATH_RUNCONTROL (default: "./RunControl.nml", i.e., the RunControl namelist file in the current directory).

Examples:

1. Run SUEWS simulation using the RunControl namelist file in the current directory:

```
$ suews-run -p ./RunControl.nml
```

2. Run SUEWS simulation using an arbitray RunControl namelist file by specifying the path to the RunControl namelist file:

\$ suews-run -p /path/to/RunControl.nml

```
suews-run [OPTIONS]
```

Options

-p, --path_runcontrol <path_runcontrol>

Path to the RunControl namelist file (default: ./RunControl.nml).

suews-convert

Convert SUEWS input tables from older versions to newer ones (one-way only).

suews-convert [OPTIONS]

Options

-f, --from <fromVer>

Required Version to convert from

Options 2019b | 2019a | 2018c | 2018b | 2018a | 2017a | 2016a

-t, --to <toVer>

Required Version to convert to

Options 2020a | 2019b | 2019a | 2018c | 2018b | 2018a | 2017a

-i, --input <fromDir>

Required Original directory to convert, which must have the RunControl.nml file

-o, --output <toDir>

Required New directory to create for converted tables. Note: the created directory will have the same structure as the original one; however, forcing files and output folder won't be includede.

Key Data Structures

df_state variables

Note: Data structure of df_state is explained here.

aerodynamicresistancemethod

Description Internal use. Please DO NOT modify

Dimensionality 0

Dimensionality Remarks Scalar

SUEWS-related variables None

ah_min

Description Minimum QF values.

Dimensionality (2,)

Dimensionality Remarks 2: {Weekday, Weekend}

```
SUEWS-related variables AHMin_WD, AHMin_WE
ah_slope_cooling
          Description Cooling slope of QF calculation.
          Dimensionality (2,)
          Dimensionality Remarks 2: {Weekday, Weekend}
          SUEWS-related variables AHSlope_Cooling_WD, AHSlope_Cooling_WE
ah_slope_heating
          Description Heating slope of QF calculation.
          Dimensionality (2,)
          Dimensionality Remarks 2: {Weekday, Weekend}
          SUEWS-related variables AHSlope_Heating_WD, AHSlope_Heating_WE
ahprof_24hr
          Description Hourly profile values used in energy use calculation.
          Dimensionality (24, 2)
          Dimensionality Remarks 24: hours of a day
              2: {Weekday, Weekend}
          SUEWS-related variables EnergyUseProfWD, EnergyUseProfWE
air_ext_lw
          Description Internal use. Please DO NOT modify
          Dimensionality 0
          Dimensionality Remarks Scalar
          SUEWS-related variables None
air_ext_sw
          Description Internal use. Please DO NOT modify
          Dimensionality 0
          Dimensionality Remarks Scalar
          SUEWS-related variables None
air_ssa_lw
          Description Internal use. Please DO NOT modify
          Dimensionality 0
          Dimensionality Remarks Scalar
          SUEWS-related variables None
air_ssa_sw
          Description Internal use. Please DO NOT modify
```

Dimensionality 0

```
Dimensionality Remarks Scalar
          SUEWS-related variables None
alb
          Description Effective surface albedo (middle of the day value) for summertime.
          Dimensionality (7,)
          Dimensionality Remarks 7: { Paved, Bldgs, EveTr, DecTr, Grass, BSoil, Water}
          SUEWS-related variables AlbedoMax
albdectr_id
          Description Albedo of deciduous surface DecTr on day 0 of run
          Dimensionality 0
          Dimensionality Remarks Scalar
          SUEWS-related variables albDecTr0
albevetr_id
          Description Albedo of evergreen surface EveTr on day 0 of run
          Dimensionality 0
          Dimensionality Remarks Scalar
          SUEWS-related variables albEveTr0
albgrass_id
          Description Albedo of grass surface Grass on day 0 of run
          Dimensionality 0
          Dimensionality Remarks Scalar
          SUEWS-related variables albGrass0
albmax_dectr
          Description Effective surface albedo (middle of the day value) for summertime.
          Dimensionality 0
          Dimensionality Remarks Scalar
          SUEWS-related variables AlbedoMax
albmax_evetr
          Description Effective surface albedo (middle of the day value) for summertime.
          Dimensionality 0
          Dimensionality Remarks Scalar
          SUEWS-related variables AlbedoMax
albmax_grass
          Description Effective surface albedo (middle of the day value) for summertime.
          Dimensionality 0
```

```
SUEWS-related variables AlbedoMax
albmin_dectr
          Description Effective surface albedo (middle of the day value) for wintertime (not including snow).
          Dimensionality 0
          Dimensionality Remarks Scalar
          SUEWS-related variables AlbedoMin
albmin_evetr
          Description Effective surface albedo (middle of the day value) for wintertime (not including snow).
          Dimensionality 0
          Dimensionality Remarks Scalar
          SUEWS-related variables AlbedoMin
albmin_grass
          Description Effective surface albedo (middle of the day value) for wintertime (not including snow).
          Dimensionality 0
          Dimensionality Remarks Scalar
          SUEWS-related variables AlbedoMin
alpha_bioco2
          Description The mean apparent ecosystem quantum. Represents the initial slope of the light-
              response curve.
          Dimensionality (3,)
          Dimensionality Remarks 3: { EveTr, DecTr, Grass}
          SUEWS-related variables alpha
alpha_enh_bioco2
          Description Part of the alpha coefficient related to the fraction of vegetation.
          Dimensionality (3,)
          Dimensionality Remarks 3: { EveTr, DecTr, Grass}
          SUEWS-related variables alpha_enh
alt
          Description Altitude of grids [m].
          Dimensionality 0
          Dimensionality Remarks Scalar
          SUEWS-related variables Alt
```

Dimensionality Remarks Scalar

```
baset
          Description Base Temperature for initiating growing degree days (GDD) for leaf growth. [°C]
          Dimensionality (3,)
          Dimensionality Remarks 3: { EveTr, DecTr, Grass}
          SUEWS-related variables BaseT
baset_cooling
          Description Critical cooling temperature.
          Dimensionality (2,)
          Dimensionality Remarks 2: {Weekday, Weekend}
          SUEWS-related variables TCritic_Cooling_WD, TCritic_Cooling_WE
baset_hc
          Description Base temperature for heating degree days [°C]
          Dimensionality 0
          Dimensionality Remarks Scalar
          SUEWS-related variables BaseT HC
baset_heating
          Description Critical heating temperature.
          Dimensionality (2,)
          Dimensionality Remarks 2: {Weekday, Weekend}
          SUEWS-related variables TCritic_Heating_WD, TCritic_Heating_WE
basete
          Description Base temperature for initiating sensesance degree days (SDD) for leaf off. [°C]
          Dimensionality (3,)
          Dimensionality Remarks 3: { EveTr, DecTr, Grass}
          SUEWS-related variables BaseTe
basetmethod
          Description Determines method for base temperature used in HDD/CDD calculations.
          Dimensionality 0
          Dimensionality Remarks Scalar
          SUEWS-related variables BaseTMethod
beta_bioco2
          Description The light-saturated gross photosynthesis of the canopy. [umol m<sup>-2</sup> s<sup>-1</sup>]
          Dimensionality (3,)
          Dimensionality Remarks 3: { EveTr, DecTr, Grass}
          SUEWS-related variables beta
```

```
beta_enh_bioco2
           Description Part of the beta coefficient related to the fraction of vegetation.
           Dimensionality (3,)
           Dimensionality Remarks 3: { EveTr, DecTr, Grass}
           SUEWS-related variables beta_enh
bldgh
           Description Mean building height [m]
           Dimensionality 0
           Dimensionality Remarks Scalar
           SUEWS-related variables H_Bldgs
capmax_dec
           Description Maximum water storage capacity for upper surfaces (i.e. canopy)
           Dimensionality 0
           Dimensionality Remarks Scalar
           SUEWS-related variables StorageMax
capmin_dec
           Description Minimum water storage capacity for upper surfaces (i.e. canopy).
           Dimensionality 0
           Dimensionality Remarks Scalar
           SUEWS-related variables StorageMin
chanohm
           Description Bulk transfer coefficient for this surface to use in AnOHM [-]
           Dimensionality (7,)
           Dimensionality Remarks 7: { Paved, Bldgs, EveTr, DecTr, Grass, BSoil, Water}
          SUEWS-related variables AnOHM_Ch
co2pointsource
           Description CO2 emission factor [kg km<sup>-1</sup>]
           Dimensionality 0
           Dimensionality Remarks Scalar
           SUEWS-related variables CO2PointSource
cpanohm
           Description Volumetric heat capacity for this surface to use in AnOHM [J m<sup>-3</sup>]
           Dimensionality (7,)
           Dimensionality Remarks 7: { Paved, Bldgs, EveTr, DecTr, Grass, BSoil, Water}
           SUEWS-related variables AnOHM_Cp
```

crwmax

Description Maximum water holding capacity of snow [mm]

Dimensionality 0

Dimensionality Remarks Scalar

SUEWS-related variables CRWMax

crwmin

Description Minimum water holding capacity of snow [mm]

Dimensionality 0

Dimensionality Remarks Scalar

SUEWS-related variables CRWMin

daywat

Description Irrigation flag: 1 for on and 0 for off.

Dimensionality (7,)

Dimensionality Remarks 7: {Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday}

SUEWS-related variables DayWat(1), DayWat(2), DayWat(3), DayWat(4), DayWat(5), DayWat(6), DayWat(7)

daywatper

Description Fraction of properties using irrigation for each day of a week.

Dimensionality (7,)

Dimensionality Remarks 7: {Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday}

SUEWS-related variables DayWatPer(1), DayWatPer(2), DayWatPer(3), DayWatPer(4), DayWatPer(5), DayWatPer(6), DayWatPer(7)

decidcap_id

Description Storage capacity of deciduous surface *DecTr* on day 0 of run.

Dimensionality 0

Dimensionality Remarks Scalar

SUEWS-related variables decidCap0

dectreeh

Description Mean height of deciduous trees [m]

Dimensionality 0

Dimensionality Remarks Scalar

SUEWS-related variables *H_DecTr*

diagmethod

Description Defines how near surface diagnostics are calculated.

Dimensionality 0

Dimensionality Remarks Scalar

```
SUEWS-related variables DiagMethod
diagnose
          Description Internal use. Please DO NOT modify
          Dimensionality 0
          Dimensionality Remarks Scalar
          SUEWS-related variables None
diagqn
          Description Internal use. Please DO NOT modify
          Dimensionality 0
          Dimensionality Remarks Scalar
          SUEWS-related variables None
diaggs
          Description Internal use. Please DO NOT modify
          \textbf{Dimensionality} \ \ 0
          Dimensionality Remarks Scalar
          SUEWS-related variables None
drainrt
          Description Drainage rate of bucket for LUMPS [mm h<sup>-1</sup>]
          Dimensionality 0
          Dimensionality Remarks Scalar
          SUEWS-related variables LUMPS_DrRate
ef_umolco2perj
          Description Emission factor for fuels used for building heating.
          Dimensionality 0
          Dimensionality Remarks Scalar
          SUEWS-related variables EF_umo1C02perJ
emis
          Description Effective surface emissivity.
          Dimensionality (7,)
          Dimensionality Remarks 7: { Paved, Bldgs, EveTr, DecTr, Grass, BSoil, Water}
          SUEWS-related variables Emissivity
emissionsmethod
          Description Determines method for QF calculation.
          Dimensionality 0
          Dimensionality Remarks Scalar
```

```
SUEWS-related variables EmissionsMethod
enddls
          Description End of the day light savings [DOY]
          Dimensionality 0
          Dimensionality Remarks Scalar
          SUEWS-related variables EndDLS
enef_v_jkm
          Description Emission factor for heat [J k m<sup>-1</sup>].
          Dimensionality 0
          Dimensionality Remarks Scalar
          SUEWS-related variables EnEF_v_Jkm
evapmethod
          Description Internal use. Please DO NOT modify
          Dimensionality 0
          Dimensionality Remarks Scalar
          SUEWS-related variables None
evetreeh
          Description Mean height of evergreen trees [m]
          Dimensionality 0
          Dimensionality Remarks Scalar
          SUEWS-related variables H_EveTr
faibldg
          Description Frontal area index for buildings [-]
          Dimensionality 0
          Dimensionality Remarks Scalar
          SUEWS-related variables FAI_Bldgs
faidectree
          Description Frontal area index for deciduous trees [-]
          Dimensionality 0
          Dimensionality Remarks Scalar
          SUEWS-related variables FAI_DecTr
faievetree
          Description Frontal area index for evergreen trees [-]
          Dimensionality 0
          Dimensionality Remarks Scalar
```

```
SUEWS-related variables FAI_EveTr
faut
           Description Fraction of irrigated area that is irrigated using automated systems
           Dimensionality 0
           Dimensionality Remarks Scalar
           SUEWS-related variables Faut
fcef_v_kgkm
           Description CO2 emission factor for weekdays [kg km<sup>-1</sup>];;CO2 emission factor for weekends [kg
               km<sup>-1</sup>]
           Dimensionality (2,)
           Dimensionality Remarks 2: {Weekday, Weekend}
           SUEWS-related variables FcEF_v_kgkmWD, FcEF_v_kgkmWE
flowchange
           Description Difference in input and output flows for water surface [mm h<sup>-1</sup>]
           Dimensionality 0
           Dimensionality Remarks Scalar
           SUEWS-related variables FlowChange
frfossilfuel_heat
           Description Fraction of fossil fuels used for building heating [-]
           Dimensionality 0
           Dimensionality Remarks Scalar
           SUEWS-related variables FrFossilFuel_Heat
frfossilfuel_nonheat
           Description Fraction of fossil fuels used for building energy use [-]
           Dimensionality 0
           Dimensionality Remarks Scalar
           SUEWS-related variables FrFossilFuel_NonHeat
g1
           Description Related to maximum surface conductance [mm s<sup>-1</sup>]
           Dimensionality 0
           Dimensionality Remarks Scalar
           SUEWS-related variables G1
g2
           Description Related to Kdown dependence [W m<sup>-2</sup>]
           Dimensionality 0
```

```
Dimensionality Remarks Scalar
          SUEWS-related variables G2
g3
          Description Related to VPD dependence [units depend on gsModel]
          Dimensionality 0
          Dimensionality Remarks Scalar
          SUEWS-related variables G3
g4
          Description Related to VPD dependence [units depend on gsModel]
          Dimensionality 0
          Dimensionality Remarks Scalar
          SUEWS-related variables G4
g5
          Description Related to temperature dependence [°C]
          Dimensionality 0
          Dimensionality Remarks Scalar
          SUEWS-related variables G5
g6
          Description Related to soil moisture dependence [mm<sup>-1</sup>]
          Dimensionality 0
          Dimensionality Remarks Scalar
          SUEWS-related variables G6
gddfull
          Description The growing degree days (GDD) needed for full capacity of the leaf area index (LAI)
              [°C].
          Dimensionality (3,)
          Dimensionality Remarks 3: { EveTr, DecTr, Grass}
          SUEWS-related variables GDDFull
ground_albedo_dir_mult_fact
          Description Internal use. Please DO NOT modify
          Dimensionality 0
          Dimensionality Remarks Scalar
          SUEWS-related variables None
```

gsmodel

Description Formulation choice for conductance calculation.

Dimensionality 0

Dimensionality Remarks Scalar

SUEWS-related variables gsModel

h_maintain

Description water depth to maintain used in automatic irrigation (e.g., ponding water due to flooding irrigation in rice crop-field) [mm].

Dimensionality 0

Dimensionality Remarks Scalar

SUEWS-related variables H_maintain

humactivity_24hr

Description Hourly profile values used in human activity calculation.

Dimensionality (24, 2)

Dimensionality Remarks 24: hours of a day

2: {Weekday, Weekend}

SUEWS-related variables ActivityProfWD, ActivityProfWE

ie_a

Description Coefficient for automatic irrigation model.

Dimensionality (3,)

Dimensionality Remarks 3: { EveTr, DecTr, Grass}

SUEWS-related variables Ie_a1, Ie_a2, Ie_a3

ie_end

Description Day when irrigation ends [DOY]

Dimensionality 0

Dimensionality Remarks Scalar

SUEWS-related variables Ie_end

ie_m

Description Coefficient for manual irrigation model.

Dimensionality (3,)

Dimensionality Remarks 3: { EveTr, DecTr, Grass}

SUEWS-related variables Ie_m1, Ie_m2, Ie_m3

ie_start

Description Day when irrigation starts [DOY]

 $\textbf{Dimensionality} \ \ 0$

```
Dimensionality Remarks Scalar
          SUEWS-related variables Ie_start
internalwateruse_h
          Description Internal water use [mm h<sup>-1</sup>]
          Dimensionality 0
          Dimensionality Remarks Scalar
          SUEWS-related variables InternalWaterUse
irrfracbldgs
          Description Fraction of Bldgs that is irrigated [-]
          Dimensionality 0
          Dimensionality Remarks Scalar
          SUEWS-related variables IrrFr_Bldgs
irrfracbsoil
          Description Fraction of BSoil that is irrigated [-]
          Dimensionality 0
          Dimensionality Remarks Scalar
          SUEWS-related variables IrrFr_BSoil
irrfracdectr
          Description Fraction of DecTr that is irrigated [-]
          Dimensionality 0
          Dimensionality Remarks Scalar
          SUEWS-related variables IrrFr_DecTr
irrfracevetr
          Description Fraction of EveTr that is irrigated [-]
          Dimensionality 0
          Dimensionality Remarks Scalar
          SUEWS-related variables IrrFr_EveTr
irrfracgrass
          Description Fraction of Grass that is irrigated [-]
          Dimensionality 0
          Dimensionality Remarks Scalar
          SUEWS-related variables IrrFr_Grass
irrfracpaved
          Description Fraction of Paved that is irrigated [-]
          Dimensionality 0
```

```
Dimensionality Remarks Scalar
          SUEWS-related variables IrrFr_Paved
irrfracwater
          Description Fraction of Water that is irrigated [-]
          Dimensionality 0
          Dimensionality Remarks Scalar
          SUEWS-related variables IrrFr_Water
kkanohm
          Description Thermal conductivity for this surface to use in AnOHM [W m K<sup>-1</sup>]
          Dimensionality (7,)
          Dimensionality Remarks 7: { Paved, Bldgs, EveTr, DecTr, Grass, BSoil, Water}
          SUEWS-related variables AnOHM_Kk
kmax
          Description Maximum incoming shortwave radiation [W m<sup>-2</sup>]
          Dimensionality 0
          Dimensionality Remarks Scalar
          SUEWS-related variables Kmax
lai_id
          Description Initial LAI values.
          Dimensionality (3,)
          Dimensionality Remarks 3: { EveTr, DecTr, Grass}
          SUEWS-related variables LAIinitialDecTr, LAIinitialEveTr, LAIinitialGrass
laicalcyes
          Description Internal use. Please DO NOT modify
          Dimensionality 0
          Dimensionality Remarks Scalar
          SUEWS-related variables None
laimax
          Description full leaf-on summertime value
          Dimensionality (3,)
          Dimensionality Remarks 3: { EveTr, DecTr, Grass}
          SUEWS-related variables LAIMax
laimin
          Description leaf-off wintertime value
          Dimensionality (3,)
```

```
Dimensionality Remarks 3: { EveTr, DecTr, Grass}
          SUEWS-related variables LAIMin
laipower
          Description parameters required by LAI calculation.
          Dimensionality (4, 3)
          Dimensionality Remarks 4: {LeafGrowthPower1, LeafGrowthPower2, LeafOffPower1,
              LeafOffPower2}
              3: { EveTr, DecTr, Grass}
          SUEWS-related variables LeafGrowthPower1,
                                                           LeafGrowthPower2.
                                                                                   LeafOffPower1.
              LeafOffPower2
laitype
          Description LAI calculation choice.
          Dimensionality (3,)
          Dimensionality Remarks 3: { EveTr, DecTr, Grass}
          SUEWS-related variables LAIEq
lat
          Description Latitude [deg].
          Dimensionality 0
          Dimensionality Remarks Scalar
          SUEWS-related variables lat
lng
          Description longitude [deg]
          Dimensionality 0
          Dimensionality Remarks Scalar
          SUEWS-related variables lng
maxconductance
          Description The maximum conductance of each vegetation or surface type. [mm s<sup>-1</sup>]
          Dimensionality (3,)
          Dimensionality Remarks 3: { EveTr, DecTr, Grass}
          SUEWS-related variables MaxConductance
maxfcmetab
          Description Maximum (day) CO2 from human metabolism. [W m<sup>-2</sup>]
          Dimensionality 0
          Dimensionality Remarks Scalar
          SUEWS-related variables MaxFCMetab
```

maxqfmetab

Description Maximum value for human heat emission. [W m⁻²]

Dimensionality 0

Dimensionality Remarks Scalar

SUEWS-related variables MaxQFMetab

min_res_bioco2

Description Minimum soil respiration rate (for cold-temperature limit) [umol m⁻² s⁻¹].

Dimensionality (3,)

Dimensionality Remarks 3: { EveTr, DecTr, Grass}

SUEWS-related variables min_respi

minfcmetab

Description Minimum (night) CO2 from human metabolism. [W m⁻²]

Dimensionality 0

Dimensionality Remarks Scalar

SUEWS-related variables MinFCMetab

minqfmetab

Description Minimum value for human heat emission. [W m⁻²]

Dimensionality 0

Dimensionality Remarks Scalar

SUEWS-related variables MinQFMetab

n_stream_lw_urban

Description Internal use. Please DO NOT modify

Dimensionality 0

Dimensionality Remarks Scalar

SUEWS-related variables None

n_stream_sw_urban

Description Internal use. Please DO NOT modify

Dimensionality 0

Dimensionality Remarks Scalar

SUEWS-related variables None

n_vegetation_region_urban

Description Internal use. Please DO NOT modify

Dimensionality 0

Dimensionality Remarks Scalar

SUEWS-related variables None

```
narp_emis_snow
          Description Effective surface emissivity.
          Dimensionality 0
          Dimensionality Remarks Scalar
          SUEWS-related variables Emissivity
narp_trans_site
          Description Atmospheric transmissivity for NARP [-]
          Dimensionality 0
          Dimensionality Remarks Scalar
          SUEWS-related variables NARP_Trans
netradiationmethod
          Description Determines method for calculation of radiation fluxes.
          Dimensionality 0
          Dimensionality Remarks Scalar
          SUEWS-related variables NetRadiationMethod
ohm_coef
          Description Coefficients for OHM calculation.
          Dimensionality (8, 4, 3)
          Dimensionality Remarks 8: { Paved, Bldgs, EveTr, DecTr, Grass, BSoil, Water, one extra land
              cover type (currently NOT used)}
              4: {SummerWet, SummerDry, WinterWet, WinterDry}
              3: {a1, a2, a3}
          SUEWS-related variables a1, a2, a3
ohm threshsw
          Description Temperature threshold determining whether summer/winter OHM coefficients are ap-
              plied [°C]
          Dimensionality (8,)
          Dimensionality Remarks 8: { Paved, Bldgs, EveTr, DecTr, Grass, BSoil, Water, one extra land
              cover type (currently NOT used)}
          SUEWS-related variables OHMThresh_SW
ohm_threshwd
          Description Soil moisture threshold determining whether wet/dry OHM coefficients are applied [-]
          Dimensionality (8,)
          Dimensionality Remarks 8: { Paved, Bldgs, EveTr, DecTr, Grass, BSoil, Water, one extra land
              cover type (currently NOT used)}
          SUEWS-related variables OHMThresh WD
```

ohmincqf **Description** Determines whether the storage heat flux calculation uses Q^* or $(Q^* + QF)$. **Dimensionality** 0 **Dimensionality Remarks** Scalar SUEWS-related variables OHMIncQF pipecapacity **Description** Storage capacity of pipes [mm] **Dimensionality** 0 **Dimensionality Remarks** Scalar SUEWS-related variables PipeCapacity popdensdaytime **Description** Daytime population density (i.e. workers, tourists) [people ha⁻¹] Dimensionality (2,) Dimensionality Remarks 2: {Weekday, Weekend} SUEWS-related variables PopDensDay popdensnighttime **Description** Night-time population density (i.e. residents) [people ha⁻¹] **Dimensionality** 0 **Dimensionality Remarks** Scalar SUEWS-related variables PopDensNight popprof_24hr **Description** Hourly profile values used in dynamic population estimation. **Dimensionality** (24, 2) **Dimensionality Remarks** 24: hours of a day 2: {Weekday, Weekend} SUEWS-related variables PopProfWD, PopProfWE pormax_dec **Description** full leaf-on summertime value Used only for *DecTr* (can affect roughness calculation) **Dimensionality** 0 **Dimensionality Remarks** Scalar SUEWS-related variables PorosityMax pormin_dec **Description** leaf-off wintertime value Used only for *DecTr* (can affect roughness calculation) **Dimensionality** 0 **Dimensionality Remarks** Scalar

```
SUEWS-related variables PorosityMin
porosity_id
          Description Porosity of deciduous vegetation on day 0 of run.
          Dimensionality 0
          Dimensionality Remarks Scalar
          SUEWS-related variables porosity0
preciplimit
          Description Temperature limit when precipitation falls as snow [°C]
          Dimensionality 0
          Dimensionality Remarks Scalar
          SUEWS-related variables PrecipLimSnow
preciplimitalb
          Description Limit for hourly precipitation when the ground is fully covered with snow [mm]
          Dimensionality 0
          Dimensionality Remarks Scalar
          SUEWS-related variables PrecipLimAlb
qf0_beu
          Description Building energy use [W m<sup>-2</sup>]
          Dimensionality (2,)
          Dimensionality Remarks 2: {Weekday, Weekend}
          SUEWS-related variables QF0_BEU_WD, QF0_BEU_WE
qf_a
          Description Base value for QF calculation.
          Dimensionality (2,)
          Dimensionality Remarks 2: {Weekday, Weekend}
          SUEWS-related variables QF_A_WD, QF_A_WE
qf_b
          Description Parameter related to heating degree days.
          Dimensionality (2,)
          Dimensionality Remarks 2: {Weekday, Weekend}
          SUEWS-related variables QF_B_WD, QF_B_WE
qf_c
          Description Parameter related to heating degree days.
          Dimensionality (2,)
          Dimensionality Remarks 2: {Weekday, Weekend}
```

```
SUEWS-related variables QF_C_WD, QF_C_WE
radmeltfact
          Description Hourly radiation melt factor of snow [mm W<sup>-1</sup> h<sup>-1</sup>]
          Dimensionality 0
          Dimensionality Remarks Scalar
          SUEWS-related variables RadMeltFactor
raincover
          Description Limit when surface totally covered with water for LUMPS [mm]
          Dimensionality 0
          Dimensionality Remarks Scalar
          SUEWS-related variables LUMPS_Cover
rainmaxres
          Description Maximum water bucket reservoir [mm] Used for LUMPS surface wetness control.
          Dimensionality 0
          Dimensionality Remarks Scalar
          SUEWS-related variables LUMPS MaxRes
resp_a
          Description Respiration coefficient a.
          Dimensionality (3,)
          Dimensionality Remarks 3: { EveTr, DecTr, Grass}
          SUEWS-related variables resp_a
resp_b
          Description Respiration coefficient b - related to air temperature dependency.
          Dimensionality (3,)
          Dimensionality Remarks 3: { EveTr, DecTr, Grass}
          SUEWS-related variables resp_b
roughlenheatmethod
          Description Determines method for calculating roughness length for heat.
          Dimensionality 0
          Dimensionality Remarks Scalar
          SUEWS-related variables RoughLenHeatMethod
```

${\bf roughlen mommethod}$

Description Determines how aerodynamic roughness length (z0m) and zero displacement height (zdm) are calculated.

Dimensionality 0

```
Dimensionality Remarks Scalar
          SUEWS-related variables RoughLenMomMethod
runofftowater
          Description Fraction of above-ground runoff flowing to water surface during flooding [-]
          Dimensionality 0
          Dimensionality Remarks Scalar
          SUEWS-related variables RunoffToWater
s1
          Description A parameter related to soil moisture dependence [-]
          Dimensionality 0
          Dimensionality Remarks Scalar
          SUEWS-related variables $1
s2
          Description A parameter related to soil moisture dependence [mm]
          Dimensionality 0
          Dimensionality Remarks Scalar
          SUEWS-related variables 52
sathydraulicconduct
          Description Hydraulic conductivity for saturated soil [mm s<sup>-1</sup>]
          Dimensionality (7,)
          Dimensionality Remarks 7: { Paved, Bldgs, EveTr, DecTr, Grass, BSoil, Water}
          SUEWS-related variables SatHydraulicCond
sddfull
          Description The sensesence degree days (SDD) needed to initiate leaf off. [°C]
          Dimensionality (3,)
          Dimensionality Remarks 3: { EveTr, DecTr, Grass}
          SUEWS-related variables SDDFull
sfr_surf
          Description Surface cover fractions.
          Dimensionality (7,)
          Dimensionality Remarks 7: { Paved, Bldgs, EveTr, DecTr, Grass, BSoil, Water}
          SUEWS-related variables Fr_Bldgs, Fr_Bsoil, Fr_DecTr, Fr_EveTr, Fr_Grass, Fr_Paved,
              Fr_Water
```

smdmethod

Description Determines method for calculating soil moisture deficit (SMD).

Dimensionality 0

Dimensionality Remarks Scalar

SUEWS-related variables SMDMethod

snowalb

Description Initial snow albedo

Dimensionality 0

Dimensionality Remarks Scalar

SUEWS-related variables SnowAlb0

snowalbmax

Description Effective surface albedo (middle of the day value) for summertime.

Dimensionality 0

Dimensionality Remarks Scalar

SUEWS-related variables AlbedoMax

snowalbmin

Description Effective surface albedo (middle of the day value) for wintertime (not including snow).

Dimensionality 0

Dimensionality Remarks Scalar

SUEWS-related variables AlbedoMin

snowdens

Description Initial snow density of each land cover.

Dimensionality (7,)

Dimensionality Remarks 7: { Paved, Bldgs, EveTr, DecTr, Grass, BSoil, Water}

SUEWS-related variables SnowDensBldgs, SnowDensPaved, SnowDensDecTr, SnowDensEveTr, SnowDensGrass, SnowDensBSoil, SnowDensWater

snowdensmax

Description Maximum snow density [kg m⁻³]

Dimensionality 0

Dimensionality Remarks Scalar

SUEWS-related variables SnowDensMax

snowdensmin

Description Fresh snow density [kg m⁻³]

Dimensionality 0

Dimensionality Remarks Scalar

```
SUEWS-related variables SnowDensMin
snowfrac
          Description Initial plan area fraction of snow on each land cover`
          Dimensionality (7,)
          Dimensionality Remarks 7: { Paved, Bldgs, EveTr, DecTr, Grass, BSoil, Water}
          SUEWS-related variables SnowFracBldgs,
                                                           SnowFracPaved,
                                                                                   SnowFracDecTr,
              SnowFracEveTr, SnowFracGrass, SnowFracBSoil, SnowFracWater
snowlimbldg
          Description Limit of the snow water equivalent for snow removal from roads and roofs [mm]
          Dimensionality 0
          Dimensionality Remarks Scalar
          SUEWS-related variables SnowLimRemove
snowlimpaved
          Description Limit of the snow water equivalent for snow removal from roads and roofs [mm]
          Dimensionality 0
          Dimensionality Remarks Scalar
          SUEWS-related variables SnowLimRemove
snowpack
          Description Initial snow water equivalent on each land cover
          Dimensionality (7,)
          Dimensionality Remarks 7: { Paved, Bldgs, EveTr, DecTr, Grass, BSoil, Water}
          SUEWS-related variables SnowPackBldgs,
                                                           SnowPackPaved.
                                                                                   SnowPackDecTr,
              SnowPackEveTr, SnowPackGrass, SnowPackBSoil, SnowPackWater
snowpacklimit
          Description Limit for the snow water equivalent when snow cover starts to be patchy [mm]
          Dimensionality (7,)
          Dimensionality Remarks 7: { Paved, Bldgs, EveTr, DecTr, Grass, BSoil, Water}
          SUEWS-related variables SnowLimPatch
snowprof_24hr
          Description Hourly profile values used in snow clearing.
          Dimensionality (24, 2)
          Dimensionality Remarks 24: hours of a day
              2: {Weekday, Weekend}
          SUEWS-related variables SnowClearingProfWD, SnowClearingProfWE
```

snowuse

Description Determines whether the snow part of the model runs.

Dimensionality 0

Dimensionality Remarks Scalar

SUEWS-related variables SnowUse

snowwater

Description Initial amount of liquid water in the snow on each land cover

Dimensionality (7,)

Dimensionality Remarks 7: { Paved, Bldgs, EveTr, DecTr, Grass, BSoil, Water}

SUEWS-related variables SnowWaterBldgsState,

SnowWaterPavedState, SnowWaterGrassState,

SnowWaterDecTrState,

SnowWaterEveTrState,

SnowWaterBSoilState, SnowWaterWaterState

soildepth

Description Depth of soil beneath the surface [mm]

Dimensionality (7,)

Dimensionality Remarks 7: { Paved, Bldgs, EveTr, DecTr, Grass, BSoil, Water}

SUEWS-related variables SoilDepth

soilstore_surf

Description Initial water stored in soil beneath *Bldgs* surface [mm];;Initial water stored in soil beneath *Paved* surface [mm];;Initial water stored in soil beneath *DecTr* surface [mm];;Initial water stored in soil beneath *Grass* surface [mm];;Initial water stored in soil beneath *Grass* surface [mm];;Initial water stored in soil beneath *BSoil* surface [mm]

Dimensionality (7,)

Dimensionality Remarks 7: { Paved, Bldgs, EveTr, DecTr, Grass, BSoil, Water}

SUEWS-related variables *SoilstoreBldgsState*,

SoilstorePavedState,

SoilstoreDecTrState, SoilstoreEveTrState,

SoilstoreGrassState,

SoilstoreBSoilState

soilstorecap_surf

Description Limit value for *SoilDepth* [mm]

Dimensionality (7,)

Dimensionality Remarks 7: { Paved, Bldgs, EveTr, DecTr, Grass, BSoil, Water}

SUEWS-related variables SoilStoreCap

stabilitymethod

Description Defines which atmospheric stability functions are used.

Dimensionality 0

Dimensionality Remarks Scalar

SUEWS-related variables StabilityMethod

startdls

Description Start of the day light savings [DOY]

Dimensionality 0

Dimensionality Remarks Scalar

SUEWS-related variables StartDLS

state_surf

Description Initial wetness condition on *Bldgs*;;Initial wetness condition on *Paved*;;Initial wetness condition on *DecTr*;;Initial wetness condition on *EveTr*;;Initial wetness condition on *Grass*;;Initial wetness condition on *BSoil*;;Initial wetness condition on *Water*

Dimensionality (7,)

Dimensionality Remarks 7: { Paved, Bldgs, EveTr, DecTr, Grass, BSoil, Water}

SUEWS-related variables BldgsState, PavedState, DecTrState, EveTrState, GrassState, BSoilState, WaterState

statelimit_surf

Description Upper limit to the surface state. [mm]

Dimensionality (7,)

Dimensionality Remarks 7: { Paved, Bldgs, EveTr, DecTr, Grass, BSoil, Water}

SUEWS-related variables StateLimit

storageheatmethod

Description Determines method for calculating storage heat flux QS.

Dimensionality 0

Dimensionality Remarks Scalar

SUEWS-related variables StorageHeatMethod

storedrainprm

Description Coefficients used in drainage calculation.

Dimensionality (6, 7)

Dimensionality Remarks 6: { StorageMin, DrainageEq, DrainageCoef1, DrainageCoef2, StorageMax, current storage}

7: { Paved, Bldgs, EveTr, DecTr, Grass, BSoil, Water}

SUEWS-related variables DrainageCoef1, DrainageCoef2, DrainageEq, StorageMax, StorageMin

surfacearea

Description Area of the grid [ha].

Dimensionality 0

Dimensionality Remarks Scalar

SUEWS-related variables SurfaceArea

```
sw_dn_direct_frac
          Description Internal use. Please DO NOT modify
          Dimensionality 0
          Dimensionality Remarks Scalar
          SUEWS-related variables None
tau_a
          Description Time constant for snow albedo aging in cold snow [-]
          Dimensionality 0
          Dimensionality Remarks Scalar
          SUEWS-related variables tau_a
tau_f
          Description Time constant for snow albedo aging in melting snow [-]
          Dimensionality 0
          Dimensionality Remarks Scalar
          SUEWS-related variables tau f
tau r
          Description Time constant for snow density ageing [-]
          Dimensionality 0
          Dimensionality Remarks Scalar
          SUEWS-related variables tau_r
tempmeltfact
          Description Hourly temperature melt factor of snow [mm K<sup>-1</sup> h<sup>-1</sup>]
          Dimensionality 0
          Dimensionality Remarks Scalar
          SUEWS-related variables TempMeltFactor
th
          Description Upper air temperature limit [°C]
          Dimensionality 0
          Dimensionality Remarks Scalar
          SUEWS-related variables TH
theta_bioco2
          Description The convexity of the curve at light saturation.
          Dimensionality (3,)
          Dimensionality Remarks 3: { EveTr, DecTr, Grass}
          SUEWS-related variables theta
```

timezone

Description Time zone [h] for site relative to UTC (east is positive). This should be set according to the times given in the meteorological forcing file(s).

Dimensionality 0

Dimensionality Remarks Scalar

SUEWS-related variables Timezone

tl

Description Lower air temperature limit [°C]

Dimensionality 0

Dimensionality Remarks Scalar

SUEWS-related variables TL

trafficrate

Description Traffic rate used for CO2 flux calculation.

Dimensionality (2,)

Dimensionality Remarks 2: {Weekday, Weekend}

SUEWS-related variables TrafficRate_WD, TrafficRate_WE

trafficunits

Description Units for the traffic rate for the study area. Not used in v2018a.

Dimensionality 0

Dimensionality Remarks Scalar

SUEWS-related variables TrafficUnits

traffprof_24hr

Description Hourly profile values used in traffic activity calculation.

Dimensionality (24, 2)

Dimensionality Remarks 24: hours of a day

2: {Weekday, Weekend}

SUEWS-related variables TraffProfWD, TraffProfWE

tstep

Description Specifies the model time step [s].

 $\textbf{Dimensionality} \ \ 0$

Dimensionality Remarks Scalar

SUEWS-related variables Tstep

use_sw_direct_albedo

Description Internal use. Please DO NOT modify

Dimensionality 0

```
Dimensionality Remarks Scalar
```

SUEWS-related variables None

veg_contact_fraction_const

Description Internal use. Please DO NOT modify

Dimensionality 0

Dimensionality Remarks Scalar

SUEWS-related variables None

veg_fsd_const

Description Internal use. Please DO NOT modify

Dimensionality 0

Dimensionality Remarks Scalar

SUEWS-related variables None

veg_ssa_lw

Description Internal use. Please DO NOT modify

Dimensionality 0

Dimensionality Remarks Scalar

SUEWS-related variables None

veg_ssa_sw

Description Internal use. Please DO NOT modify

Dimensionality 0

Dimensionality Remarks Scalar

SUEWS-related variables None

veg_type

Description Internal use. Please DO NOT modify

Dimensionality 0

Dimensionality Remarks Scalar

SUEWS-related variables None

waterdist

Description Fraction of water redistribution

Dimensionality (8, 6)

Dimensionality Remarks 8: { *Paved*, *Bldgs*, *EveTr*, *DecTr*, *Grass*, *BSoil*, *Water*, one extra land cover type (currently NOT used)}

6: { Paved, Bldgs, EveTr, DecTr, Grass, BSoil}

SUEWS-related variables ToBSoil, ToBldgs, ToDecTr, ToEveTr, ToGrass, ToPaved, ToRunoff, ToSoilStore, ToWater

waterusemethod

Description Defines how external water use is calculated.

Dimensionality 0

Dimensionality Remarks Scalar

SUEWS-related variables WaterUseMethod

wetthresh_surf

Description Depth of water which determines whether evaporation occurs from a partially wet or completely wet surface [mm].

Dimensionality (7,)

Dimensionality Remarks 7: { Paved, Bldgs, EveTr, DecTr, Grass, BSoil, Water}

SUEWS-related variables WetThreshold

wuprofa_24hr

Description Hourly profile values used in automatic irrigation.

Dimensionality (24, 2)

Dimensionality Remarks 24: hours of a day

2: {Weekday, Weekend}

SUEWS-related variables WaterUseProfAutoWD, WaterUseProfAutoWE

wuprofm_24hr

Description Hourly profile values used in manual irrigation.

Dimensionality (24, 2)

Dimensionality Remarks 24: hours of a day

2: {Weekday, Weekend}

SUEWS-related variables WaterUseProfManuWD, WaterUseProfManuWE

Z

Description Measurement height [m] for all atmospheric forcing variables set in SSss YYYY data tt.txt.

Dimensionality 0

Dimensionality Remarks Scalar

SUEWS-related variables z

z0m_in

Description Roughness length for momentum [m]

Dimensionality 0

Dimensionality Remarks Scalar

SUEWS-related variables z0

zdm_in

Description Zero-plane displacement [m]

Dimensionality 0

Dimensionality Remarks Scalar

SUEWS-related variables zd

df_forcing variables

Note: Data structure of df_forcing is explained here.

RH

Description Relative Humidity [%] (measurement height (z) is needed in SUEWS_SiteSelect.txt)

Tair

Description Air temperature [°C] (measurement height (z) is needed in SUEWS_SiteSelect.txt)

U

Description Wind speed [m s-1] (measurement height (z) is needed in SUEWS_SiteSelect.txt)

Wuh

Description External water use [m³]

fcld

Description Cloud fraction [tenths]

id

Description Day of year [DOY]

imin

Description Minute [M]

isec

Description Second [S]

it

Description Hour [H]

iу

Description Year [YYYY]

kdiff

Description Diffuse radiation [W m⁻²] **Recommended in this version.** if *SOLWEIGUse* = 1

kdir

Description Direct radiation [W m⁻²] **Recommended in this version.** if SOLWEIGUse = 1

kdown

Description Incoming shortwave radiation [W m^{-2}] Must be > 0 W m^{-2} .

lai

Description Observed leaf area index [m⁻² m⁻²]

ldown

Description Incoming longwave radiation [W m⁻²]

pres

Description Barometric pressure [kPa] (measurement height (z) is needed in SUEWS_SiteSelect.txt)

qe

Description Latent heat flux [W m⁻²]

qf

Description Anthropogenic heat flux [W m⁻²]

qh

Description Sensible heat flux [W m⁻²]

qn

Description Net all-wave radiation [W m^{-2}] (Required if NetRadiationMethod = 0.)

qs

Description Storage heat flux [W m⁻²]

rain

Description Rainfall [mm] (measurement height (z) is needed in SUEWS_SiteSelect.txt)

snow

Description Snow cover fraction (0-1) [-] (Required if *SnowUse* = 1)

wdir

Description Wind direction [°] **Not available in this version.**

xsmd

Description Observed soil moisture [m³ m⁻³] or [kg kg⁻¹]

df_output variables

Note: Data structure of df_output is explained here.

AddWater

Description Additional water flow received from other grids [mm]

```
AlbBulk
          Description Bulk albedo [-]
          Group SUEWS
AlbDecTr
          Description Albedo of deciduous trees [-]
          Group DailyState
AlbEveTr
          Description Albedo of evergreen trees [-]
          Group DailyState
AlbGrass
          Description Albedo of grass [-]
          Group DailyState
AlbSnow
          Description Snow albedo [-]
          Group DailyState
AlbSnow
          Description Snow albedo [-]
          Group SUEWS
Azimuth
          Description Solar azimuth angle [°]
          Group SUEWS
CI
          Description clearness index for Ldown (Lindberg et al. 2008)
          Group BEERS
DLHrs
          Description Day length [h]
          Group DailyState
DaysSR
          Description Days since rain [days]
          Group DailyState
DecidCap
```

Description Moisture storage capacity of deciduous trees [mm]

```
DensSnow_BSoil
            Description Snow density – bare soil surface [kg m<sup>-3</sup>]
            Group DailyState
DensSnow_BSoil
            Description Snow density - bare soil surface [kg m<sup>-3</sup>]
            Group DailyState
DensSnow_BSoil
            Description Snow density – bare soil surface [kg m<sup>-3</sup>]
            Group snow
DensSnow_BSoil
            Description Snow density - bare soil surface [kg m<sup>-3</sup>]
DensSnow_Bldgs
            Description Snow density – building surface [kg m<sup>-3</sup>]
            Group snow
DensSnow_Bldgs
            Description Snow density - building surface [kg m<sup>-3</sup>]
            Group DailyState
DensSnow_Bldgs
            Description Snow density - building surface [kg m<sup>-3</sup>]
            Group snow
DensSnow_Bldgs
            Description Snow density – building surface [kg m<sup>-3</sup>]
            Group DailyState
DensSnow_DecTr
            Description Snow density – deciduous surface [kg m<sup>-3</sup>]
            Group snow
DensSnow_DecTr
            Description Snow density - deciduous surface [kg m<sup>-3</sup>]
            Group DailyState
DensSnow_DecTr
            Description Snow density – deciduous surface [kg m<sup>-3</sup>]
            Group DailyState
```

```
DensSnow_DecTr
            Description Snow density - deciduous surface [kg m<sup>-3</sup>]
            Group snow
DensSnow_EveTr
            Description Snow density - evergreen surface [kg m<sup>-3</sup>]
            Group snow
DensSnow_EveTr
            Description Snow density – evergreen surface [kg m<sup>-3</sup>]
            Group snow
DensSnow_EveTr
            Description Snow density - evergreen surface [kg m<sup>-3</sup>]
            Group DailyState
DensSnow_EveTr
            Description Snow density – evergreen surface [kg m<sup>-3</sup>]
            Group DailyState
DensSnow_Grass
            Description Snow density - grass surface [kg m<sup>-3</sup>]
            Group DailyState
DensSnow_Grass
            Description Snow density – grass surface [kg m<sup>-3</sup>]
            Group DailyState
DensSnow_Grass
            Description Snow density - grass surface [kg m<sup>-3</sup>]
            Group snow
DensSnow_Grass
            Description Snow density – grass surface [kg m<sup>-3</sup>]
            Group snow
DensSnow_Paved
            Description Snow density - paved surface [kg m<sup>-3</sup>]
            Group DailyState
DensSnow_Paved
            Description Snow density – paved surface [kg m<sup>-3</sup>]
```

Group snow

```
DensSnow_Paved
           Description Snow density - paved surface [kg m<sup>-3</sup>]
           Group snow
DensSnow_Paved
           Description Snow density – paved surface [kg m<sup>-3</sup>]
           Group DailyState
DensSnow_Water
           Description Snow density - water surface [kg m<sup>-3</sup>]
           Group snow
DensSnow_Water
           Description Snow density – water surface [kg m<sup>-3</sup>]
           Group DailyState
DensSnow_Water
           Description Snow density - water surface [kg m<sup>-3</sup>]
           Group DailyState
DensSnow_Water
           Description Snow density – water surface [kg m<sup>-3</sup>]
           Group snow
DiffuseRad
           Description Diffuse shortwave radiation
           Group BEERS
DirectRad
           Description Direct shortwave radiation
           Group BEERS
Drainage
           Description Drainage [mm]
           Group SUEWS
Evap
           Description Evaporation [mm]
           Group SUEWS
Fc
           Description CO2 flux [umol m<sup>-2</sup> s<sup>-1</sup>]
           Group SUEWS
```

```
FcBuild
            Description CO2 flux from buildings [umol m<sup>-2</sup> s<sup>-1</sup>]
            Group SUEWS
FcMetab
            Description CO2 flux from metabolism [umol m<sup>-2</sup> s<sup>-1</sup>]
            Group SUEWS
FcPhoto
            Description CO2 flux from photosynthesis [umol m<sup>-2</sup> s<sup>-1</sup>]
            Group SUEWS
FcPoint
            Description CO2 flux from point source [umol m<sup>-2</sup> s<sup>-1</sup>]
            Group SUEWS
FcRespi
            Description CO2 flux from respiration [umol m<sup>-2</sup> s<sup>-1</sup>]
            Group SUEWS
FcTraff
            Description CO2 flux from traffic [umol m<sup>-2</sup> s<sup>-1</sup>]
            Group SUEWS
Fcld
            Description Cloud fraction [-]
            Group SUEWS
FlowCh
            Description Additional flow into water body [mm]
            Group SUEWS
GDD_DecTr
            Description Growing degree days for deciduous tree [°C d]
            Group DailyState
```

GDD_Grass

GDD_EveTr

Description Growing degree days for grass [°C d]

Description Growing degree days for evergreen tree [°C d]

Group DailyState

```
GlobalRad
          Description Input Kdn
          Group BEERS
HDD1_h
          Description Heating degree days [°C d]
          Group DailyState
HDD2_c
          Description Cooling degree days [°C d]
          Group DailyState
HDD3_Tmean
          Description Average daily air temperature in forcing data [°C]
          Group DailyState
HDD4_T5d
          Description 5-day running-mean air temperature in forcing data [°C]
          Group DailyState
Ι0
          Description theoretical value of maximum incoming solar radiation
          Group BEERS
Irr
          Description Irrigation [mm]
          Group SUEWS
Kdown
          Description Incoming shortwave radiation [W m<sup>-2</sup>]
          Group SUEWS
Kdown2d
          Description Incoming shortwave radiation at POI
          Group BEERS
Keast
          Description Shortwave radiation from east at POI
          Group BEERS
Knorth
          Description Shortwave radiation from north at POI
```

Group BEERS

Ksouth

Description Shortwave radiation from south at POI

Group BEERS

Kup

Description Outgoing shortwave radiation [W m⁻²]

Group SUEWS

Kup

Description Outgoing shortwave radiation [W m⁻²]

Group SPARTACUS

Kup2d

Description Outgoing shortwave radiation at POI

Group BEERS

Kwest

Description Shortwave radiation from west at POI

Group BEERS

LAI

Description Leaf area index [m 2 m⁻²]

Group SUEWS

LAI_DecTr

Description Leaf area index of deciduous trees [m⁻² m⁻²]

Group DailyState

LAI_EveTr

Description Leaf area index of evergreen trees [m⁻² m⁻²]

Group DailyState

LAI_Grass

Description Leaf area index of grass [m⁻² m⁻²]

Group DailyState

LAIlumps

Description Leaf area index used in LUMPS (normalised 0-1) [-]

Group DailyState

Ldown

Description Incoming longwave radiation [W m⁻²]

Ldown2d

Description Incoming longwave radiation at POI

Group BEERS

Least

Description Longwave radiation from east at POI

Group BEERS

Lnorth

Description Longwave radiation from north at POI

Group BEERS

Lob

Description Obukhov length [m]

Group SUEWS

Lsouth

Description Longwave radiation from south at POI

Group BEERS

Lup

Description Outgoing longwave radiation [W m⁻²]

Group SUEWS

Lup

Description Outgoing longwave radiation [W m⁻²]

Group SPARTACUS

Lup2d

Description Outgoing longwave radiation at POI

Group BEERS

Lwest

Description Longwave radiation from west at POI

Group BEERS

MeltWStore

Description Meltwater store [mm]

Group SUEWS

MeltWater

Description Meltwater [mm]

MwStore_BSoil

Description Melt water store – bare soil surface [mm]

Group snow

MwStore_Bldgs

Description Melt water store – building surface [mm]

Group snow

MwStore_DecTr

Description Melt water store – deciduous surface [mm]

Group snow

MwStore_EveTr

Description Melt water store – evergreen surface [mm]

Group snow

MwStore_Grass

Description Melt water store – grass surface [mm]

Group snow

MwStore_Paved

Description Melt water store – paved surface [mm]

Group snow

MwStore_Water

Description Melt water store – water surface [mm]

Group snow

Mw_BSoil

Description Meltwater – bare soil surface [mm h⁻¹]

Group snow

Mw_Bldgs

Description Meltwater – building surface [mm h⁻¹]

Group snow

Mw_DecTr

Description Meltwater – deciduous surface [mm h⁻¹]

Group snow

Mw_EveTr

Description Meltwater – evergreen surface [mm h⁻¹]

Group snow

```
Mw_Grass
            Description Meltwater – grass surface [mm h<sup>-1</sup> 1]
            Group snow
Mw_Paved
            Description Meltwater – paved surface [mm h<sup>-1</sup>]
            Group snow
Mw_Water
            Description Meltwater – water surface [mm h<sup>-1</sup>]
            Group snow
NWtrState
            Description Surface wetness state (for non-water surfaces) [mm]
            Group SUEWS
P_day
            Description Daily total precipitation [mm]
            Group DailyState
Porosity
           Description Porosity of deciduous trees [-]
            Group DailyState
Q2
            Description Air specific humidity at 2 m agl [g kg<sup>-1</sup>]
            Group SUEWS
QE
            Description Latent heat flux (calculated using SUEWS) [W m<sup>-2</sup>]
            Group SUEWS
QElumps
            Description Latent heat flux (calculated using LUMPS) [W m<sup>-2</sup>]
            Group SUEWS
QF
            Description Anthropogenic heat flux [W m<sup>-2</sup>]
            Group SUEWS
QH
            Description Sensible heat flux (calculated using SUEWS) [W m<sup>-2</sup>]
            Group SUEWS
```

```
QHlumps
            Description Sensible heat flux (calculated using LUMPS) [W m<sup>-2</sup>]
            Group SUEWS
QHresis
            Description Sensible heat flux (calculated using resistance method) [W m<sup>-2</sup>]
            Group SUEWS
QM
            Description Snow-related heat exchange [W m<sup>-2</sup>]
            Group SUEWS
QMFreeze
            Description Internal energy change [W m<sup>-2</sup>]
            Group SUEWS
QMRain
            Description Heat released by rain on snow [W m<sup>-2</sup>]
            Group SUEWS
QN
            Description Net all-wave radiation [W m<sup>-2</sup>]
            Group SUEWS
QNSnow
            Description Net all-wave radiation for snow area [W m<sup>-2</sup>]
            Group SUEWS
QNSnowFr
            Description Net all-wave radiation for snow-free area [W m<sup>-2</sup>]
            Group SUEWS
QS
            Description Storage heat flux [W m<sup>-2</sup>]
            Group SUEWS
Qa_BSoil
            Description Advective heat – bare soil surface [W m<sup>-2</sup>]
            Group snow
Qa_Bldgs
            Description Advective heat – building surface [W m<sup>-2</sup>]
            Group snow
```

```
Qa_DecTr
            Description Advective heat – deciduous surface [W m<sup>-2</sup>]
            Group snow
Qa_EveTr
            Description Advective heat – evergreen surface [W m<sup>-2</sup>]
            Group snow
Qa_Grass
            Description Advective heat – grass surface [W m<sup>-2</sup>]
            Group snow
Qa_Paved
            Description Advective heat – paved surface [W m<sup>-2</sup>]
            Group snow
Qa_Water
            Description Advective heat – water surface [W m<sup>-2</sup>]
            Group snow
QmFr_BSoil
            Description Heat related to freezing of surface store – bare soil surface [W m<sup>-2</sup>]
            Group snow
QmFr_Bldgs
            Description Heat related to freezing of surface store – building surface [W m<sup>-2</sup>]
            Group snow
QmFr_DecTr
            Description Heat related to freezing of surface store – deciduous surface [W m<sup>-2</sup>]
            Group snow
QmFr_EveTr
            Description Heat related to freezing of surface store – evergreen surface [W m<sup>-2</sup>]
            Group snow
QmFr_Grass
            Description Heat related to freezing of surface store – grass surface [W m<sup>-2</sup>]
            Group snow
QmFr_Paved
            Description Heat related to freezing of surface store – paved surface [W m<sup>-2</sup>]
            Group snow
```

```
QmFr_Water
            Description Heat related to freezing of surface store – water [W m<sup>-2</sup>]
            Group snow
Qm_BSoil
            Description Snowmelt-related heat – bare soil surface [W m<sup>-2</sup>]
            Group snow
Qm_Bldgs
            Description Snowmelt-related heat – building surface [W m<sup>-2</sup>]
            Group snow
Qm_DecTr
            Description Snowmelt-related heat – deciduous surface [W m<sup>-2</sup>]
            Group snow
Qm_EveTr
            Description Snowmelt-related heat – evergreen surface [W m<sup>-2</sup>]
            Group snow
Qm_Grass
            Description Snowmelt-related heat – grass surface [W m<sup>-2</sup>]
            Group snow
Qm_Paved
            Description Snowmelt-related heat – paved surface [W m<sup>-2</sup>]
            Group snow
Qm_Water
            Description Snowmelt-related heat – water surface [W m<sup>-2</sup>]
            Group snow
RA
            Description Aerodynamic resistance [s m<sup>-1</sup>]
            Group SUEWS
RA
            Description Aerodynamic resistance [s m<sup>-1</sup>]
            Group debug
RH2
            Description Relative humidity at 2 m agl [%]
            Group SUEWS
```

```
RO
          Description Runoff [mm]
          Group SUEWS
ROImp
          Description Above ground runoff over impervious surfaces [mm]
          Group SUEWS
ROPipe
          Description Runoff to pipes [mm]
          Group SUEWS
ROSoil
          Description Runoff to soil (sub-surface) [mm]
          Group SUEWS
ROVeg
          Description Above ground runoff over vegetated surfaces [mm]
          Group SUEWS
ROWater
          Description Runoff for water body [mm]
          Group SUEWS
RS
          Description Surface resistance [s m<sup>-1</sup>]
          Group SUEWS
RS
          Description Surface resistance [s m<sup>-1</sup>]
          Group debug
Rain
          Description Rain [mm]
          Group SUEWS
RainSn_BSoil
          Description Rain on snow – bare soil surface [mm]
          Group snow
RainSn_Bldgs
          Description Rain on snow – building surface [mm]
          Group snow
```

RainSn_DecTr

Description Rain on snow – deciduous surface [mm]

Group snow

RainSn_EveTr

Description Rain on snow – evergreen surface [mm]

Group snow

RainSn_Grass

Description Rain on snow – grass surface [mm]

Group snow

RainSn_Paved

Description Rain on snow – paved surface [mm]

Group snow

RainSn_Water

Description Rain on snow – water surface [mm]

Group snow

SDD_DecTr

Description Senescence degree days for deciduous tree [°C d]

Group DailyState

SDD_EveTr

Description Senescence degree days for evergreen tree [°C d]

Group DailyState

SDD_Grass

Description Senescence degree days for grass [°C d]

Group DailyState

SMD

Description Soil moisture deficit [mm]

Group SUEWS

SMDBSoil

Description Soil moisture deficit for bare soil surface [mm]

Group SUEWS

SMDBldgs

Description Soil moisture deficit for building surface [mm]

```
SMDDecTr
          Description Soil moisture deficit for deciduous surface [mm]
          Group SUEWS
SMDEveTr
          Description Soil moisture deficit for evergreen surface [mm]
          Group SUEWS
SMDGrass
          Description Soil moisture deficit for grass surface [mm]
          Group SUEWS
SMDPaved
          Description Soil moisture deficit for paved surface [mm]
          Group SUEWS
SWE
          Description Snow water equivalent [mm]
          Group SUEWS
SWE_BSoil
          Description Snow water equivalent – bare soil surface [mm]
          Group snow
SWE_Bldgs
          Description Snow water equivalent – building surface [mm]
          Group snow
SWE_DecTr
          Description Snow water equivalent – deciduous surface [mm]
          Group snow
SWE_EveTr
          Description Snow water equivalent – evergreen surface [mm]
          Group snow
SWE_Grass
```

Description Snow water equivalent – grass surface [mm]

Group snow

SWE_Paved

Description Snow water equivalent – paved surface [mm]

Group snow

SWE_Water

Description Snow water equivalent – water surface [mm]

Group snow

Sd_BSoil

Description Snow depth – bare soil surface [mm]

Group snow

Sd_Bldgs

Description Snow depth – building surface [mm]

Group snow

Sd_DecTr

Description Snow depth – deciduous surface [mm]

Group snow

Sd_EveTr

Description Snow depth – evergreen surface [mm]

Group snow

Sd_Grass

Description Snow depth – grass surface [mm]

Group snow

Sd_Paved

Description Snow depth – paved surface [mm]

Group snow

Sd_Water

Description Snow depth – water surface [mm]

Group snow

SnowCh

Description Change in snow pack [mm]

Group SUEWS

SnowRBldgs

Description Snow removed from building surface [mm]

Group SUEWS

SnowRPaved

Description Snow removed from paved surface [mm]

StBSoil Description Surface wetness state for bare soil surface [mm] **Group SUEWS** StBldgs **Description** Surface wetness state for building surface [mm] **Group SUEWS** StDecTr **Description** Surface wetness state for deciduous tree surface [mm] **Group SUEWS** StEveTr **Description** Surface wetness state for evergreen tree surface [mm] **Group SUEWS StGrass Description** Surface wetness state for grass surface [mm] **Group SUEWS StPaved Description** Surface wetness state for paved surface [mm]

StWater

Description Surface wetness state for water surface [mm]

Group SUEWS

Group SUEWS

State

Description Surface wetness state [mm]

Group SUEWS

SurfCh

Description Change in surface moisture store [mm]

Group SUEWS

T2

Description Air temperature at 2 m agl [°C]

Group SUEWS

T_1

Description Air temperature at level 1 [°C]

Group RSL

T_10 **Description** Air temperature at level 10 [°C] **Group** RSL T_11 **Description** Air temperature at level 11 [°C] **Group** RSL T_12 **Description** Air temperature at level 12 [°C] **Group** RSL T_13 **Description** Air temperature at level 13 [°C] **Group** RSL T_14 **Description** Air temperature at level 14 [°C] **Group** RSL T_15 **Description** Air temperature at level 15 [°C] **Group** RSL T_16 **Description** Air temperature at level 16 [°C] **Group** RSL T_17 **Description** Air temperature at level 17 [°C] **Group** RSL T_18 **Description** Air temperature at level 18 [°C] **Group** RSL T_19 **Description** Air temperature at level 19 [°C] **Group** RSL T_2 **Description** Air temperature at level 2 [°C]

Group RSL

```
T_20
          Description Air temperature at level 20 [°C]
          Group RSL
T_21
          Description Air temperature at level 21 [°C]
          Group RSL
T_22
          Description Air temperature at level 22 [°C]
          Group RSL
T_23
          Description Air temperature at level 23 [°C]
          Group RSL
T_24
          Description Air temperature at level 24 [°C]
          Group RSL
T_25
          Description Air temperature at level 25 [°C]
          Group RSL
T_26
          Description Air temperature at level 26 [°C]
          Group RSL
T_27
          Description Air temperature at level 27 [°C]
          Group RSL
T_28
          Description Air temperature at level 28 [°C]
          Group RSL
T_29
          Description Air temperature at level 29 [°C]
          Group RSL
T_3
          Description Air temperature at level 3 [°C]
          Group RSL
```

```
T_30
          Description Air temperature at level 30 [°C]
          Group RSL
T_4
          Description Air temperature at level 4 [°C]
          Group RSL
T_5
          Description Air temperature at level 5 [°C]
          Group RSL
T_6
          Description Air temperature at level 6 [°C]
          Group RSL
T_7
          Description Air temperature at level 7 [°C]
          Group RSL
T_8
          Description Air temperature at level 8 [°C]
          Group RSL
T_9
          Description Air temperature at level 9 [°C]
          Group RSL
Ta
          Description Air temperature
          Group BEERS
Tg
          Description Surface temperature
          Group BEERS
Tmax
          Description Daily maximum temperature in forcing data [°C]
          Group DailyState
Tmin
          Description Daily minimum temperature in forcing data [°C]
```

```
Tmrt
          Description Mean Radiant Temperature
          Group BEERS
TotCh
          Description Change in surface and soil moisture stores [mm]
          Group SUEWS
Ts
          Description Skin temperature [°C]
          Group SUEWS
Tsnow_BSoil
          Description Snow surface temperature – bare soil surface [°C]
          Group snow
Tsnow_Bldgs
          Description Snow surface temperature – building surface [°C]
          Group snow
Tsnow_DecTr
          Description Snow surface temperature – deciduous surface [°C]
          Group snow
Tsnow_EveTr
          Description Snow surface temperature – evergreen surface [°C]
          Group snow
Tsnow_Grass
          Description Snow surface temperature – grass surface [°C]
          Group snow
Tsnow_Paved
          Description Snow surface temperature – paved surface [°C]
          Group snow
Tsnow_Water
          Description Snow surface temperature – water surface [°C]
          Group snow
Tsurf
          Description Bulk surface temperature [°C]
          Group SUEWS
```

```
U10
            Description Wind speed at 10 m agl [m s<sup>-1</sup>]
            Group SUEWS
U_1
            Description Wind speed at level 1 [m s<sup>-1</sup>]
            Group RSL
U_10
            Description Wind speed at level 10 [m s<sup>-1</sup>]
            Group RSL
U_11
            Description Wind speed at level 11 [m s<sup>-1</sup>]
            Group RSL
U_12
            Description Wind speed at level 12 [m s<sup>-1</sup>]
            Group RSL
U_13
            Description Wind speed at level 13 [m s<sup>-1</sup>]
            Group RSL
U_14
            Description Wind speed at level 14 [m s<sup>-1</sup>]
            Group RSL
U_15
            Description Wind speed at level 15 [m s<sup>-1</sup>]
            Group RSL
U_16
            Description Wind speed at level 16 [m s<sup>-1</sup>]
            Group RSL
U_17
            Description Wind speed at level 17 [m s<sup>-1</sup>]
            Group RSL
U_18
            Description Wind speed at level 18 [m s<sup>-1</sup>]
            Group RSL
```

```
U_19
            Description Wind speed at level 19 [m s<sup>-1</sup>]
            Group RSL
U_2
            Description Wind speed at level 2 [m s<sup>-1</sup>]
            Group RSL
U_20
            Description Wind speed at level 20 [m s<sup>-1</sup>]
            Group RSL
U_21
            Description Wind speed at level 21 [m s<sup>-1</sup>]
            Group RSL
U_22
            Description Wind speed at level 22 [m s<sup>-1</sup>]
            Group RSL
U_23
            Description Wind speed at level 23 [m s<sup>-1</sup>]
            Group RSL
U_24
            Description Wind speed at level 24 [m s<sup>-1</sup>]
            Group RSL
U_25
            Description Wind speed at level 25 [m s<sup>-1</sup>]
            Group RSL
U_26
            Description Wind speed at level 26 [m s<sup>-1</sup>]
            Group RSL
U_27
            Description Wind speed at level 27 [m s<sup>-1</sup>]
            Group RSL
U_28
            Description Wind speed at level 28 [m s<sup>-1</sup>]
            Group RSL
```

```
U_29
            Description Wind speed at level 29 [m s<sup>-1</sup>]
            Group RSL
U_3
            Description Wind speed at level 3 [m s<sup>-1</sup>]
            Group RSL
U_30
            Description Wind speed at level 30 [m s<sup>-1</sup>]
            Group RSL
U_4
            Description Wind speed at level 4 [m s<sup>-1</sup>]
            Group RSL
U_5
            Description Wind speed at level 5 [m s<sup>-1</sup>]
            Group RSL
U_6
            Description Wind speed at level 6 [m s<sup>-1</sup>]
            Group RSL
U_7
            Description Wind speed at level 7 [m s<sup>-1</sup>]
            Group RSL
U_8
            Description Wind speed at level 8 [m s<sup>-1</sup>]
            Group RSL
U_9
            Description Wind speed at level 9 [m s<sup>-1</sup>]
            Group RSL
WUDecTr
            Description Water use for irrigation of deciduous trees [mm]
            Group SUEWS
WUEveTr
            Description Water use for irrigation of evergreen trees [mm]
            Group SUEWS
```

```
WUGrass
          Description Water use for irrigation of grass [mm]
          Group SUEWS
WUInt
          Description Internal water use [mm]
          Group SUEWS
WU_DecTr1
          Description Total water use for deciduous trees [mm]
          Group DailyState
WU_DecTr2
          Description Automatic water use for deciduous trees [mm]
          Group DailyState
WU_DecTr3
          Description Manual water use for deciduous trees [mm]
          Group DailyState
WU_EveTr1
          Description Total water use for evergreen trees [mm]
          Group DailyState
WU_EveTr2
          Description Automatic water use for evergreen trees [mm]
          Group DailyState
WU_EveTr3
          Description Manual water use for evergreen trees [mm]
          Group DailyState
WU_Grass1
          Description Total water use for grass [mm]
          Group DailyState
WU_Grass2
          Description Automatic water use for grass [mm]
          Group DailyState
WU_Grass3
          Description Manual water use for grass [mm]
```

Zenith **Description** Solar zenith angle [°] **Group SUEWS** a1 **Description** OHM cofficient a1 - [-] Group DailyState a2 **Description** OHM cofficient a2 [W m⁻² h⁻¹] Group DailyState a3 **Description** OHM cofficient a3 - [W m⁻²] Group DailyState altitude **Description** Altitude angle of the Sun **Group BEERS** azimuth **Description** Azimuth angle of the Sun **Group BEERS** deltaLAI **Description** Change in leaf area index (normalised 0-1) [-] Group DailyState frMelt_BSoil **Description** Amount of freezing melt water – bare soil surface [mm] Group snow frMelt_Bldgs **Description** Amount of freezing melt water – building surface [mm] Group snow frMelt_DecTr **Description** Amount of freezing melt water – deciduous surface [mm] Group snow frMelt_EveTr **Description** Amount of freezing melt water – evergreen surface [mm] Group snow

```
frMelt_Grass
           Description Amount of freezing melt water – grass surface [mm]
           Group snow
frMelt_Paved
           Description Amount of freezing melt water – paved surface [mm]
           Group snow
frMelt_Water
           Description Amount of freezing melt water – water surface [mm]
           Group snow
fr_Bldgs
           Description Fraction of snow – building surface [-]
           Group snow
fr_DecTr
           Description Fraction of snow – deciduous surface [-]
           Group snow
fr_EveTr
           Description Fraction of snow – evergreen surface [-]
           Group snow
fr_Grass
           Description Fraction of snow – grass surface [-]
           Group snow
fr_Paved
           Description Fraction of snow – paved surface [-]
           Group snow
kup_BSoilSnow
           Description Reflected shortwave radiation – bare soil surface [W m<sup>-2</sup>]
           Group snow
kup_BldgsSnow
           Description Reflected shortwave radiation – building surface [W m<sup>-2</sup>]
           Group snow
kup_DecTrSnow
           Description Reflected shortwave radiation – deciduous surface [W m<sup>-2</sup>]
           Group snow
```

```
kup_EveTrSnow
            Description Reflected shortwave radiation – evergreen surface [W m<sup>-2</sup>]
            Group snow
kup_GrassSnow
            Description Reflected shortwave radiation – grass surface [W m<sup>-2</sup>]
            Group snow
kup_PavedSnow
            Description Reflected shortwave radiation – paved surface [W m<sup>-2</sup>]
            Group snow
kup_WaterSnow
            Description Reflected shortwave radiation – water surface [W m<sup>-2</sup>]
            Group snow
q_1
            Description Specific humidity at level 1 [g kg<sup>-1</sup>]
            Group RSL
q_10
            Description Specific humidity at level 10 [g kg<sup>-1</sup>]
            Group RSL
q_11
            Description Specific humidity at level 11 [g kg<sup>-1</sup>]
            Group RSL
q_12
            Description Specific humidity at level 12 [g kg<sup>-1</sup>]
            Group RSL
q_13
            Description Specific humidity at level 13 [g kg<sup>-1</sup>]
            Group RSL
q_14
            Description Specific humidity at level 14 [g kg<sup>-1</sup>]
            Group RSL
q_15
            Description Specific humidity at level 15 [g kg<sup>-1</sup>]
            Group RSL
```

```
q_16
            Description Specific humidity at level 16 [g kg<sup>-1</sup>]
            Group RSL
q_17
            Description Specific humidity at level 17 [g kg<sup>-1</sup>]
            Group RSL
q_18
            Description Specific humidity at level 18 [g kg<sup>-1</sup>]
             Group RSL
q_19
            Description Specific humidity at level 19 [g kg<sup>-1</sup>]
             Group RSL
q_2
             Description Specific humidity at level 2 [g kg<sup>-1</sup>]
            Group RSL
q_20
            Description Specific humidity at level 20 [g kg<sup>-1</sup>]
            Group RSL
q_21
             Description Specific humidity at level 21 [g kg<sup>-1</sup>]
            Group RSL
q_22
            Description Specific humidity at level 22 [g kg<sup>-1</sup>]
            Group RSL
q_23
            Description Specific humidity at level 23 [g kg<sup>-1</sup>]
            Group RSL
q_24
             Description Specific humidity at level 24 [g kg<sup>-1</sup>]
            Group RSL
q_25
             Description Specific humidity at level 25 [g kg<sup>-1</sup>]
             Group RSL
```

```
q_26
            Description Specific humidity at level 26 [g kg<sup>-1</sup>]
            Group RSL
q_27
            Description Specific humidity at level 27 [g kg<sup>-1</sup>]
            Group RSL
q_28
            Description Specific humidity at level 28 [g kg<sup>-1</sup>]
             Group RSL
q_29
            Description Specific humidity at level 29 [g kg<sup>-1</sup>]
             Group RSL
q_3
             Description Specific humidity at level 3 [g kg<sup>-1</sup>]
            Group RSL
q_30
            Description Specific humidity at level 30 [g kg<sup>-1</sup>]
            Group RSL
q_4
             Description Specific humidity at level 4 [g kg<sup>-1</sup>]
            Group RSL
q_5
            Description Specific humidity at level 5 [g kg<sup>-1</sup>]
            Group RSL
q_6
            Description Specific humidity at level 6 [g kg<sup>-1</sup>]
            Group RSL
q_7
             Description Specific humidity at level 7 [g kg<sup>-1</sup>]
            Group RSL
q_8
             Description Specific humidity at level 8 [g kg<sup>-1</sup>]
            Group RSL
```

```
q_9
          Description Specific humidity at level 9 [g kg<sup>-1</sup>]
          Group RSL
z0m
          Description Roughness length for momentum [m]
          Group SUEWS
z_1
          Description Height at level 1 [m]
          Group RSL
z_10
          Description Height at level 10 [m]
          Group RSL
z_11
          Description Height at level 11 [m]
          Group RSL
z_12
          Description Height at level 12 [m]
          Group RSL
z_13
          Description Height at level 13 [m]
          Group RSL
z_14
          Description Height at level 14 [m]
          Group RSL
z_15
          Description Height at level 15 [m]
          Group RSL
z_16
          Description Height at level 16 [m]
          Group RSL
z_17
          Description Height at level 17 [m]
          Group RSL
```

```
z_18
          Description Height at level 18 [m]
          Group RSL
z_19
          Description Height at level 19 [m]
          Group RSL
z_2
          Description Height at level 2 [m]
          Group RSL
z_20
          Description Height at level 20 [m]
          Group RSL
z_21
          Description Height at level 21 [m]
          Group RSL
z_22
          Description Height at level 22 [m]
          Group RSL
z_23
          Description Height at level 23 [m]
          Group RSL
z_24
          Description Height at level 24 [m]
          Group RSL
z_25
          Description Height at level 25 [m]
          Group RSL
z_26
          Description Height at level 26 [m]
          Group RSL
z_27
          Description Height at level 27 [m]
          Group RSL
```

```
z_28
          Description Height at level 28 [m]
          Group RSL
z_29
          Description Height at level 29 [m]
          Group RSL
z_3
          Description Height at level 3 [m]
          Group RSL
z_30
          Description Height at level 30 [m]
          Group RSL
z_4
          Description Height at level 4 [m]
          Group RSL
z_5
          Description Height at level 5 [m]
          Group RSL
z_6
          Description Height at level 6 [m]
          Group RSL
z_7
          Description Height at level 7 [m]
          Group RSL
z_8
          Description Height at level 8 [m]
          Group RSL
z_9
          Description Height at level 9 [m]
          Group RSL
zdm
          Description Zero-plane displacement height [m]
          Group SUEWS
```

FAQ

Contents

- *I cannot install SuPy following the docs, what is wrong there?*
- How do I know which version of SuPy I am using?
- A kernel may have died exception happened, where did I go wrong?
- How can I upgrade SuPy to an up-to-date version?
- How to deal with KeyError when trying to load initial model states?

I cannot install SuPy following the docs, what is wrong there?

please check if your environment meets the following requirements:

- 1. Operating system (OS):
 - a. is it 64 bit? only 64 bit systems are supported.
 - b. is your OS up to date? only recent desktop systems are supported:
 - · Windows 10 and above
 - macOS 10.13 and above
 - Linux: no restriction; If SuPy cannot run on your specific Linux distribution, please report it to us.

You can get the OS information with the following code:

```
import platform
platform()
```

- 2. Python interpreter:
 - a. is your Python interpreter 64 bit?

Check running mode with the following code:

```
import struct
struct.calcsize('P')*8
```

b. is your Python version above 3.5?

Check version info with the following code:

```
import sys
sys.version
```

If your environment doesn't meet the requirement by SuPy, please use a proper environment; otherwise, 'please report your issue'....

How do I know which version of SuPy I am using?

Use the following code:

```
import supy
supy.show_version()
```

Note: *show_version* is only available after v2019.5.28.

A kernel may have died exception happened, where did I go wrong?

The issue is highly likely due to invalid input to SuPy and SUEWS kernel. We are trying to avoid such exceptions, but unfortunately they might happen in some edge cases.

Please report such issues to us with your input files for debugging. Thanks!

How can I upgrade SuPy to an up-to-date version?

Run the following code in your terminal:

```
python3 -m pip install supy --upgrade
```

How to deal with KeyError when trying to load initial model states?

Please see :issue: 28

Version History

Version 2022.9.22

• New

Added experimental support SPARTACUS module.

• Improvement

None.

Changes

None.

• Fix

- Known issue
 - 1. ESTM is not supported yet.
 - 2. BLUEWS, a CBL modules in SUEWS, is not supported yet.
 - 3. Simulation in parallel mode is NOT supported on Windows due to system limitation.

Version 2021.11.22

• New

None.

Improvement

None.

Changes

None.

- Fix
 - 1. Fixed an issue in incorrect pressure unit in *gen_forcing_era5* for pressure mode. (Thansk to @XiaoxiongXie for fixing via :PR: #39`)
- · Known issue
 - 1. ESTM is not supported yet.
 - 2. BLUEWS, a CBL modules in SUEWS, is not supported yet.
 - 3. Simulation in parallel mode is NOT supported on Windows due to system limitation.

Version 2021.11.20

- New
 - 1. Added option pressure_level in gen_forcing_era5.
- Improvement

None.

Changes

- Fix
 - 1. Fixed an issue in generating ERA5 forcing due to xarray update in merge.
- Known issue
 - 1. ESTM is not supported yet.
 - 2. BLUEWS, a CBL modules in SUEWS, is not supported yet.
 - 3. Simulation in parallel mode is NOT supported on Windows due to system limitation.

Version 2021.7.22

• New

None.

Improvement

None.

Changes

None.

- Fix
 - 1. Fixed an issue in loading parameter table caused by recent update of pandas to 1.3.x.
 - 2. Fixed an issue in ERA5 download due to renaming of orography to geopotential.
- · Known issue
 - 1. ESTM is not supported yet.
 - 2. BLUEWS, a CBL modules in SUEWS, is not supported yet.
 - 3. Simulation in parallel mode is NOT supported on Windows due to system limitation.

Version 2021.5.26

- New
 - 1. Update supy-driver to 2021a iteration.
- Improvement
 - 1. a new method for calculating roughness length for momentum and displacement height (roughlenmommethod=4) based on plan area index as illustrated in figure 1a of GO99.
- Changes

None.

• Fix

- Known issue
 - 1. ESTM is not supported yet.
 - 2. BLUEWS, a CBL modules in SUEWS, is not supported yet.
 - 3. Simulation in parallel mode is NOT supported on Windows due to system limitation.

Version 2020.11.3

New

- 1. Update supy-driver to 2020b iteration.
- 2. Add function for plotting RSL variables supy.util.plot_rsl.

Improvement

- 1. The RSL related functions are more robust in dealing with broader urban morphology settings.
- 2. Internal changes to conform with recent upgrades in pandas.

Changes

None.

• Fix

1. Fix an issue in supy.util.read_forcing that improper resampling could be conducted if input temporal resolution is the same as the desirable resampling time step_mod.

· Known issue

- 1. ESTM is not supported yet.
- 2. BLUEWS, a CBL modules in SUEWS, is not supported yet.
- 3. Simulation in parallel mode is NOT supported on Windows due to system limitation.

Version 2020.5.29

New

- 1. Update supy-driver to 2020a iteration.
- 2. Add function for plotting RSL variables *supy.util.plot_rsl*.

Improvement

None.

Changes

None.

• Fix

- 1. Fix the humidity variable in ERA5-based forcing generation.
- 2. Fix the impact study tutorial.

· Known issue

- 1. ESTM is not supported yet.
- 2. BLUEWS, a CBL modules in SUEWS, is not supported yet.
- 3. Simulation in parallel mode is NOT supported on Windows due to system limitation.

Version 2020.2.2

• New

- 1. A checker to validate input DataFrame`s. See option `check_input in run_supy.
- 2. Utilities to generate forcing data using ERA-5 data. See download_era5 and gen_forcing_era5.

• Improvement

1. Improved performance of the parallel mode.

Changes

None.

• Fix

None.

· Known issue

- 1. ESTM is not supported yet.
- 2. BLUEWS, a CBL modules in SUEWS, is not supported yet.
- 3. Simulation in parallel mode is NOT supported on Windows due to system limitation.

Version 2019.8.29

• New

- 1. added WRF-SUEWS related functions.
- 2. added diagnostics of canyon profiles.

Improvement

None.

Changes

1. synchronised with v2019a interface: minimum supy_driver v2019a2.

• Fix

None.

· Known issue

- 1. ESTM is not supported yet.
- 2. BLUEWS, a CBL modules in SUEWS, is not supported yet.
- 3. Performance in parallel mode can be worse than serial mode sometimes due to heavy (de)-serialisation loads.

Version 2019.7.17

- New
 - 1. added OHM related functions.
 - 2. added surface conductance related functions.
- Improvement

None.

• Changes

None.

- Fix
 - 1. Fixed a bug in unit conversion for TMY data generation.
- · Known issue

ESTM is not supported yet.

Version 2019.6.8

• New

None.

• Improvement

None.

Changes

None.

- Fix
 - 1. Fixed a bug in rescaling Kdown when loading forcing data.
- · Known issue

ESTM is not supported yet.

Version 2019.5.28

Spring house cleaning with long-await command line tools (more on the way!).

- New
 - 1. Added version info function: show_version.
 - 2. Added command line tools:
 - suews-run: SuPy wrapper to mimic SUEWS-binary-based simulation.
 - *suews-convert*: convert input tables from older versions to newer ones (one-way only).
- Improvement

•	Changes

None.

• Fix

1. Fixed a bug in writing out multi-grid output files caused by incorrect dropping of temporal information by pandas .

• Known issue

ESTM is not supported yet.

Version 2019.4.29

Parallel run.

• New

Added support for parallel run on the fly.

• Improvement

None.

Changes

None.

• Fix

None.

• Known issue

None

Version 2019.4.17

UMEP compatibility tweaks.

• New

None.

• Improvement

None.

• Changes

Error messages: problems.txt will be written out in addition to the console error message similarly as SUEWS binary.

• Fix

Incorrect caching of input libraries.

• Known issue

None

Version 2019.4.15

FR	٨	5	do	XX711	10	ьa

• New

Added experimental support for downloading and processing ERA-5 data to force supy simulations.

• Improvement

Improved compatibility with earlier pandas version in resampling output.

• Changes

None.

• Fix

None.

· Known issue

None

Version 2019.3.21

TMY generation.

• New

Added preliminary support for generating TMY dataset with SuPy output.

• Improvement

None.

Changes

None.

• Fix

None.

· Known issue

None

Version 2019.3.14

This release improved memory usage.

• New

None.

• Improvement

Optimised memory consumption for longterm simulations.

• Changes

• Fix
None.
Known issue
None
Version 2019.2.25
This release dropped support for Python 3.5 and below.
• New
None.
• Improvement
None.
• Changes
Dropped support for Python 3.5 and below.
• Fix
None.
Known issue
None
Version 2019.2.24
This release added the ability to save output files.
• New
1. Added support to save output files. See: supy.save_supy()
2. Added support to initialise SuPy from saved df_state.csv. See: supy.init_supy()
• Improvement
None.
• Changes
None.
• Fix
None.
Known issue
None

Version 2019.2.19

This is a release that improved the exception handling due to fatal error in supy_driver.

• New

Added support to handle python kernel crash caused by fatal error in supy_driver kernel; so python kernel won't crash any more even supy_driver is stopped.

Improvement

None.

Changes

None

• Fix

None.

· Known issue

None

Version 2019.2.8

This is a release that fixes recent bugs found in SUEWS that may lead to abnormal simulation results of storage heat flux, in particular when *SnowUse* is enabled (i.e., snowuse=1).

New

None.

• Improvement

Improved the performance in loading initial model state from a large number of grids (>1k)

Changes

Updated SampleRun dataset by: 1. setting surface fractions (sfr) to a more realistic value based on London KCL case; 2. enabling snow module (snowuse=1).

- Fix
 - 1. Fixed a bug in the calculation of storage heat flux.
 - 2. Fixed a bug in loading popdens for calculating anthropogenic heat flux.
- · Known issue

None

Version 2019.1.1 (preview release, 01 Jan 2019)

- New
 - 1. Slimmed the output groups by excluding unsupported *ESTM* results
 - 2. SuPy documentation
 - Key IO data structures documented:
 - df_output variables (:issue:`9`)
 - df_state variables (:issue:`8`)
 - df_forcing variables (:issue:`7`)
 - Tutorial of parallel SuPy simulations for impact studies
- Improvement
 - 1. Improved calculation of OHM-related radiation terms
- Changes

None.

• Fix

None

· Known issue

None

Version 2018.12.15 (internal test release in December 2018) — ====

- New
 - 1. Preview release of SuPy based on the computation kernel of SUEWS 2018b
- Improvement
 - 1. Improved calculation of OHM-related radiation terms
- Changes

None.

• Fix

None

- · Known issue
 - 1. The heat storage modules AnOHM and ESTM are not supported yet.

7.6.2 SUEWS in UMEP

SUEWS can be run as a standalone model but also can be used within UMEP. There are numerous tools included within UMEP to help a user get started. The SUEWS (Simple) within UMEP is a fast way to start using SUEWS.

The version of SUEWS within UMEP is the complete model. Thus all options that are listed in this manual are available to the user. In the UMEP SUEWS (Simple) runs all options are set to values to allow initial exploration of the model behaviour.

· Pre-Processor

- Meteorological Data

- * Prepare Existing Data Transforms meteorological data into UMEP format
- * Download data (WATCH) Prepare meteorological dataset from WATCH

- Spatial Data

* Spatial Data Downloader Plugin for retrieving geodata from online services suitable for various UMEP related tools - LCZ Converter Conversion from Local Climate Zones (LCZs) in the WUDAPT database into SUEWS input data

- Urban land cover

- Land Cover Reclassifier Reclassifies a grid into UMEP format land cover grid. Land surface models
- * Land Cover Fraction (Point) Land cover fractions estimates from a land cover grid based on a specific point in space
- * Land Cover Fraction (Grid) Land cover fractions estimates from a land cover grid based on a polygon grid

- Urban Morphology

- * Morphometric Calculator (Point) Morphometric parameters from a DSM based on a specific point in space
- * Morphometric Calculator (Grid) Morphometric parameters estimated from a DSM based on a polygon grid
- * Source Area Model (Point) Source area calculated from a DSM based on a specific point in space.

- SUEWS input data

* SUEWS Prepare Preprocessing and preparing input data for the SUEWS model

Processor

- Anthropogenic Heat (Q_F)

- * LQF Spatial variations anthropogenic heat release for urban areas
- * \mathbf{GQF} Anthropogenic Heat (Q_F) .

- Urban Energy Balance

- * SUEWS (Simple) Urban Energy and Water Balance.
- * SUEWS (Advanced) Urban Energy and Water Balance.

· Post-Processor

- Urban Energy Balance

* SUEWS analyser Plugin for plotting and statistical analysis of model results from SUEWS simple and SUEWS advanced

- Benchmark

* Benchmark System For statistical analysis of model results, such as SUEWS

7.6.3 Differences between SUEWS and LUMPS

The largest difference between LUMPS and SUEWS is that the latter simulates the urban water balance in detail while LUMPS takes a simpler approach for the sensible and latent heat fluxes and the water balance ("water bucket"). The calculation of evaporation/latent heat in SUEWS is more biophysically based. Due to its simplicity, LUMPS requires less parameters in order to run. SUEWS gives turbulent heat fluxes calculated with both models as an output.

Similarities and differences between LUMPS and SUEWS.

	LUMPS	SUEWS
Net all-wave	Input or NARP	Input or NARP
radiation (Q*)		
Storage heat flux	Input or from OHM	Input or from OHM
(QS)		
Anthropogenic	Input or calculated	Input or calculated
heat flux (QF)		
Latent heat (QE)	DeBruin and Holtslag	Penman-Monteith equation2
	(1982)	
Sensible heat flux	DeBruin and Holtslag	Residual from available energy minus QE
(QH)	(1982)	
Water balance	No water balance included	Running water balance of canopy and water balance of
		soil
Soil moisture	Not considered	Modelled
Surface wetness	Simple water bucket model	Running water balance
Irrigation	Only fraction of surface	Input or calculated with a simple model
	area that is irrigated	
Surface cover	Buildings, paved, vegetation	Buildings, paved, coniferous and deciduous
		trees/shrubs, irrigated and unirrigated grass

7.6.4 Differences between SUEWS and FRAISE

FRAISE, Flux Ratio – Active Index Surface Exchange scheme, provides an estimate of mean midday (± 3 h around solar noon) energy partitioning from information on the surface characteristics and estimates of the mean midday incoming radiative energy and anthropogenic heat release. Please refer to Loridan and Grimmond [2012] for further details.

Topic	FRAISE	LUMPS	SUEWS
Complexity	Simplest	Moderate	More complex
Software	R code	Windows exe	Windows exe (written in Fortran) -
provided		(written in Fortran)	other versions available
Applicable	Midday (within 3 h of solar noon)	hourly	5 min-hourly-annu al
period	Calculates active surface		
Unique	Calculates active surface and fluxes	Radiation and	Radiation, energy and water
features		energy balances	balance (includes LUMPS)

7.7 Tutorials

7.7.1 SUEWS

To help users getting started with SUEWS, the community is working on setting up tutorials and instructions for different parts of SUEWS and related tool.

The tutorials are available are found in the table below.

Note: the following tutorials are hosted on a separate website including other UMEP related tutorials.

Topic	Application
IntroductionToSuews	Energy, water and radiation fluxes for one location
SUEWSAdvanced	Energy, water and radiation fluxes for one location
SUEWSSpatial	Energy, water and radiation fluxes for a spatial grid
SUEWSWUDAPT	Making use of WUDAPT local climate zones in SUEWS

7.7.2 SuPy

For Python users, a Python package *SuPy* with SUEWS as the calculation kernel is available to conduct SUEWS simulations. SuPy tutorials are provided at its tutorial site.

7.8 Benchmark Report

Since v2018a, SUEWS is benchmarked against observations for assessment of model performance. A site based benchmark report generation system is introduced in v2018c to produce detailed reports for testing sites; the number of sites is expanding and more cases will be added as they are benchmarked.

Each report includes the following parts:

1. Overall performance:

- 1. Performance Score: Large scores indicate better performance. The scores are calculated according to weighted averages of statistics for selected benchmark variables.
- 2. Detailed Statistics: Grids are coloured based relative performance between different versions: a **greener** grid indicates better performance in the chosen variable using the specific release whereas a **redder** one shows poorer performance; and those with **gray** backgrounds indicate the same performance across different releases.
- 2. Cross-comparison in model variables between releases:
- 1. Detailed statistics tables: statistics for each variable.
- 2. Pair plots: comparison in simulation results between different version-pairs.
- 3. Time series plots: comparison in simulated monthly climatologies of diurnal cycles of each variable between different version-pairs.

The latest benchmark reports are available at the SUEWS Benchmark site.

7.7. Tutorials 339

7.9 Notation

F Frontal area index

QS Storage heat flux

BLUEWS Boundary Layer part of SUEWS

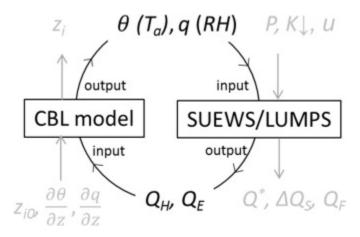


Fig. 7.3: Relation between BLUEWS and SUEWS

CDD Cooling degree days

GDD Growing degree days

HDD Heating degree days

CBL Convective boundary layer

DEM Digital Elevation Model

DSM Digital surface model

DTM Digital Terrain Model

ESTM Element Surface Temperature Method [Offerle et al., 2005]

L↓ Incoming longwave radiation

LAI Leaf area index

LUMPS Local-scale Urban Meteorological Parameterization Scheme [Loridan et al., 2011]

NARP Net All-wave Radiation Parameterization [Loridan et al., 2011, Offerle et al., 2003]

OHM Objective Hysteresis Model [Grimmond and Oke, 1999, Grimmond and Oke, 2002, Grimmond et al., 1991]

Q* Net all-wave radiation

QE Latent heat flux

QF Anthropogenic heat flux

QH Sensible heat flux

SOLWEIG The solar and longwave environmental irradiance geometry model [Lindberg and Grimmond, 2011, Lindberg *et al.*, 2008]

SVF Sky view factor

Potential temperature

tt Time step of data

UMEP Urban Multi-scale Environmental Predictor

WATCH The WATCH project has produced a large number of data sets which should be of considerable use in regional and global studies of climate and water. see WATCH webpage

zi Convective boundary layer height

7.10 Contributing Guide

Note: This guide is heavily inspired by the excellent work by the xarray project: much appreciated!

Warning: This guide is incomplete and under construction: information here might be INCORRECT.

We welcome all contributions – bug reports/fixes, documentation corrctions/improments, enhancements, and ideas – as long as they apply to the SUEWS domain, please follow these guides:

7.10.1 Bug reports and enhancement requests

where to report a bug?

how to report a bug? what to be included? - version info - MWE (minimal working example) to reproduce the issue

7.10.2 Documentation Guide

7.10.3 Development Guide

Note: If you are interested in contributing to the code please open a new discussion in the UMEP Community to illustrate your proposal: we are happy to collaborate in an open development mode.

Essential pre-requisites

compliation

git

testing

Code quidelines

If you are interested in contributing to the code please contact Sue Grimmond.

Coding

- 1. Core physics and calculation schemes of SUEWS are written in Fortran 90
- 2. Code is hosted in GitHub as private repository
- 3. Variables
 - Names should be defined at least in one place in the code ideally when defined
 - Implicit None should be used in all subroutines
 - Variable name should include units. e.g. Temp_C, Temp_K
 - Output variable attributes should be provided in the TYPE structure defined in the ctrl_output module as follows:

```
: TYPE varAttr
: CHARACTER(len = 15) :: header ! short name in headers
: CHARACTER(len = 12) :: unit ! unit
: CHARACTER(len = 14) :: fmt ! output format
: CHARACTER(len = 50) :: longNm ! long name for detailed description
: CHARACTER(len = 1) :: aggreg ! aggregation method
: CHARACTER(len = 10) :: group ! group: datetime, default, ESTM, Snow, wetc.
: INTEGER :: level ! output priority level: 0 for highest wedge in the control of the
```

- 4. Code should be written generally
- 5. Data set for testing should be provided
- 6. Demonstration that the model performance has improved when new code has been added or that any deterioration is warranted.
- 7. Additional requirements for modelling need to be indicated in the manual
- 8. All code should be commented in the program (with initials of who made the changes name specified somewhere and institution)
- 9. The references used in the code and in the equations will be collected to a webpage
- 10. Current developments that are being actively worked on

Testing

- 1. The testing of SUEWS is done using Python 3
- 2. The following tests are done for each release of SUEWS:
- 1. Working status of all physics schemes
- 2. Year-grid looping logic
- 3. Identity of output results with internal test dataset

Please use pre-defined make test option to check if your code can pass all tests or not. If not, the correctness of added code should be justified with caution.

Preparation of SUEWS Manual

- 1. The SUEWS manual is written in reStructuredText (aka rst) with a Sphinx flavour
- 2. The SUEWS manual is hosted by readthedocs.org
- 3. CSV tables used in following pages are automatically generated from the *Description* field in *Input Options* by each build, so **DON'T** manually edit them as your edits will be swiped automatically:
- SUEWS AnthropogenicEmission.txt
- SUEWS_BiogenCO2.txt
- SUEWS_Conductance.txt
- SUEWS_Irrigation.txt
- SUEWS_NonVeg.txt
- SUEWS_OHMCoefficients.txt
- SUEWS_Profiles.txt
- SUEWS_SiteSelect.txt
- SUEWS_Snow.txt
- SUEWS_Soil.txt
- SUEWS_Veg.txt
- SUEWS Water.txt
- SUEWS_WithinGridWaterDist.txt

F2PY tips

This includes several **DON'T**'s that have never been mentioned by F2PY docs:

1. DON'T mix comments as lines into argument list of Fortran subroutines/functions:

DONT:

```
subroutine(&
! DONT DO this
args&
)
```

OK:

```
subroutine(&
args& ! OK this way
)
```

2. DON'T end a subroutine as ENDSUBROUTINE. Instead, leave a space in between to form END SUBROUTINE. Otherwise, the subroutines won't be correctly parsed and picked up by F2PY.

7.11 API

This link redirects to the SUEWS API site, which provides documentation of SUEWS source code automatically generated by Doxygen.

SUEWS developers are strongly suggested to use the API site as the main reference for understanding SUEWS source code.

7.12 Acknowledgements

7.12.1 Contributors

Name	Affiliation	Contributions	Versions	Remarks
Prof Sue	University of Reading,	OHM, Evaporation-Interception, Resis-	v2011b -	Team
Grimmond	UK; prior: Indiana University, USA, King's College London, UK, University of British Columbia, Canada	tances, NARP, irrigation, anthropogenic heat, etc	onwards	Leader
Dr Ting	University of Reading,	AnOHM; Documentation system; WRF-	v2017b -	Current
Sun	UK	SUEWS coupling; SuPy (python wrapper of SUEWS)	onwards	Lead De- veloper
Dr Leena Järvi	University of Helsinki, Finland	Snow-related physics; Anthropogenic emission calculation, CO2	v2011b – v2019a	Lead Developer of v2011b – v2014b
Dr Helen Ward	University of Reading, UK	OHM improvement; Resistance calculation; Anthropogenic heat calculation	v2016a - v2017b	Lead Developer of v2016a - v2017
Dr Fredrik Lindberg	Göteborg University, Sweden	UMEP-related work, NARP, ESTM	v2011b – owards	Lead Developer of UMEP
Dr Lewis Blunn	University of Reading, UK	SUEWS-SPARTACUS coupling; RSL improvement	v2021a	Major contributor to SUEWS-SPARTACUS coupling
Dr Hamidreza Omidvar	University of Reading, UK	WRF-SUEWS coupling; Documentation system	v2018c – v2019a	Major contributor to WRF(v4.0)-SUEWS(v2018c) coupling
Minttu P. Havu	University of Helsinki, Finland	CO2	v2018c – v2019a	
Dr Zhenkun Li	Shanghai Climate Centre, China	WRF-SUEWS coupling	v2018b – v2018c	Major contributor to WRF(v3.9)-SUEWS(v2018b) coupling
Yihao Tang	University of Reading, UK	Stability, air temperature	v2018b - v2018c	
Dr Shiho Onomura	Göteborg University, Sweden	BLUEWS, ESTM	v2016a	
Dr Thomas Loridan	King's College London, UK	NARP	v2011a	
Dr Brian Offerle	Indiana University, USA	ESTM, NARP	v2011a	

7.12.2 Dependency Libraries

Note: We gratefully acknowledge the libraries/code that SUEWS uses as dependency and greatly appreciate their developers for the excellent work. Please let us know if any inapproriate use of these code and we will remove/modify the related parts accordingly.

Library	Remarks
datetime-fortran	date and time related processsing
minpack	AnOHM-related sinusoidal curve fitting
Recursive Fortran 95 quicksort routine	netCDF output for QGIS-compliant grid layout
Fortran Strings Module by Dr George Benthien	string processing

7.12.3 Funding

Note: The following grants are acknowledged for their contribution to **model development (D)** and/or **supportive observations (O)**.

Funder	Project	D,O
ERC Synergy	urbisphere 855005	D,O
NERC	APEx	D
NERC	COSMA NE/S005889/	D
UKRI	GCRF Urban Disaster Risk Hub	D
Newton/Met	CSSP-China (AJYG-DX4P1V HRC,AJYF-2GLAMK EUN, others)	D, O
Office		
NERC	ClearfLo Clean Air for London NE/H003231/1	О
NERC/Belmont	TRUC NE/L008971/1, G8MUREFU3FP-2201-075	D, O
EPSRC	LoHCool Low carbon climate-responsive Heating and Cooling of Cities	D
	EP/N009797/1	
NERC	Independent Research Fellowship	D
NSF	BCS-0095284, ATM-0710631, BCS-0221105	D, O
EPSRC	Data Assimilation for the REsilient City (DARE) EP/P002331/1	О
Royal	Mobility funding	О
Society/Newton		
H2020	UrbanFluxes (637519)	D, O
EUf7	BRIDGE (211345)	D, O
EUf7	emBRACE (283201)	D, O
University of	Sue Grimmond	O, D
Reading		
KCL	Sue Grimmond	О
EPSRC	EP/I00159X/1 EP/I00159X/2 Materials Innovation Hub: Connecting Materials	О
	Culture to Materials Science	
NERC	Field Spectroscopy Facility (FSF) 616.1110 Investigating the Urban Energy Balance	О
	of London	
EUf7	MEGAPOLI 212520	D
NERC	Airborne Remote Sensing Facility & Field Spectroscopy Facility (GB08/19)	О
CFCAS	Environmental Prediction for Canadian Cities	D, O

7.13 Version History

Warning: Information here is ONLY for developers.

7.13.1 Version 2021a (in development)

Improvement

- 1. Added a new RoughLenMomMethod (4) to calculate roughness and displacement height as a function of plan area index and effective height of roughness elements following the ensemble mean of Fig 1a in [Grimmond and Oke, 1999]
- 2. Coupled SPARCATUS into SUEWS for detailed modelling of radiation balance.
- 3. Added a new option DiagMethod in RunControl.nml to control the output of radiation balance.

Changes

1. TO ADD

• Fix

1. fixed a bug in radiation scheme: observed incoming longwave radiation cannot be used.

· Known issues

1. Wind direction is not currently downscaled so non -999 values will cause an error.

7.13.2 Version 2020a (released on 14 May 2020)

Note: In a future release, we will **ONLY** deliver SUEWS along with SuPy as a command line tool *suews-run*: release of standalone SUEWS binaries **will be stopped** to ease our maintenance load and to facilitate rapid developments. Users will need to have Python 3.6+ to install SuPy:

```
python3 -m pip install -U supy
```

However, as the source code of SUEWS are public, users can feel free to compile standalone binaries for platforms of their own interests.

Improvement

- 1. A ponding water scheme is added in the automatic irrigation calculation; useful when a certain depth of ponding water to maintain in irrigation (e.g., flooding irrigation in rice crop-field).
- 2. Irrigation fraction can be specified for all surfaces (previously only available for vegetated surfaces)
- 3. A U-shape approach for calculating HDD/CDD is introduced to account for a wide comfort zone between heating and cooling critical temperatures.

Changes

- 1. A new *RoughLenHeatMethod* option 5: adaptively choose option 1 for fully pervious surface or 2 otherwise (if any impervious surface exists).
- 2. A new column H_maintain is added in SUEWS_Irrigation.txt to set ponding water depth.
- 3. New columns to specify irrigation fractions for non-vegetated surfaces in SUEWS_SiteSelect.txt.

4. A new scheme option BaseTMethod in RunControl.nml to set calculation scheme for HDD/CDD.

• Fix

NONE.

· Known issues

1. Wind direction is not currently downscaled so non -999 values will cause an error.

7.13.3 Version 2019a (released on 15 November 2019)

Download page (under assets)

Improvement

- 1. An anthropogenic emission module is added. Module details refer to Järvi et al. (2019) [Järvi et al., 2019].
- 2. A canyon profile module is added. Module details refer to Theeuwes et al. (2019) [Theeuwes et al., 2019].

Changes

- 1. Input file SUEWS_AnthropogenicHeat.txt is renamed to SUEWS_AnthropogenicEmission.txt with new parameters added: MinFCMetab, MaxFCMetab, FrPDDwe, FcEF_v_kgkmWD and FcEF_v_kgkmWE.
- 2. BLUEWS has been recovered; set CBLUse to use it.
- 3. Removed features:
- SOLWEIG: fully removed from code.
- netCDF: fully removed as this is very infrequently used; users who need this are suggested to use SuPy with help from pandas and xarray to save results in netCDF more elegantly.

• Fix

- 1. Fixed a bug in LAI calculation for longterm runs.
- 2. Fixed a bug in net all-wave radiation differential calculation for OHM.
- 3. Fixed a bug in GDD/SDD calculation that different vegetative land covers could unexpectedly affect each other
- 4. Fixed water redistribution bug in snow module.

· Known issues

1. Wind direction is not currently downscaled so non -999 values will cause an error.

7.13.4 Version 2018c (released on 21 February 2019)

Download page (under assets)

• Improvement

- 1. SuPy (SUEWS in Python): a Python-enhanced wrapper of SUEWS, which can facilitate a more fluent workflow of SUEWS-centred urban climate research. More details refer to SuPy documentation site.
- 2. Improved benchmark report: More testing sites are added thanks to an automated benchmark report system.

Changes

None.

• Fix

- 1. Fixed a bug in LAI calculation for longterm runs.
- 2. Fixed a bug in net all-wave radiation differential calculation for OHM.
- 3. Fixed water redistribution bug in snow module.

· Known issues

- 1. BLUEWS is disabled
- 2. Observed soil moisture can not be used as an input
- 3. Wind direction is not currently downscaled so non -999 values will cause an error.

7.13.5 Version 2018b (released on 17 December 2018)

Download page (under assets)

Improvement

1. Improved calculation of OHM-related radiation terms:

The temporal difference term dQ*/dt is now calculated using the time-step-weighted dQ* of previous time step instead of a series of Q* values from previous time steps, which improves the usage of memory and allows time-step-varying simulations (needed by WRF-SUEWS coupling).

Changes

None.

• Fix

1. Fixed a bug in picking up external water use from meteorological forcing file.

· Known issues

- 1. BLUEWS is disabled
- 2. Observed soil moisture can not be used as an input
- 3. Wind direction is not currently downscaled so non -999 values will cause an error.

7.13.6 Version 2018a (released on 2 August 2018)

• New

- 1. Many under-the-hood improvements:
 - Added explicit interface intent for confusion-less coupling between SUEWS modules
 - Restructured layout of physics schemes for better modularity
 - Improved the alignment in output txt files
- 2. New readthedocs.org-based documentation system
- 3. Added SUEWS input converter for conversion of input files between versions
- 4. Added Benchmark Report for recent releases.

Improvement

- 1. Improved the near surface diagnostics scheme (T2, Q2, U10)
- 2. Improved skin temperature calculation (Ts)

Changes

- 1. StabilityMethod: recommended option is change from 2 to 3 as options other than 3 have been noticed with numerical issues under several scenarios, which will be fixed in the next release.
- 2. Model run changes in selections moved from SUEWS_SiteSelect.txt to SUEWS_AnthropogenicHeat. txt: EnergyUseProfWD, EnergyUseProfWE, ActivityProfWD, ActivityProfWE.
- 3. BiogenCO2Code is added to SUEWS_Veg.txt for looking up biogenic characteristics in the new SUEWS_BiogenCO2.txt file.
- 4. TraifficRate and BuildEnergyUse in *SUEWS_SiteSelect.txt* are expanded to allow weekday and weekend values: *TrafficRate_WD*, *TrafficRate_WE*, *QF0_BEU_WD*, *QF0_BEU_WE*.
- 5. AnthropCO2Method is removed from *RunControl.nml*.
- 6. AnthropHeatMethod is renamed to EmissionsMethod.
- 7. AHMin, AHSlope and TCritic are expanded to allow weekday and weekend values by adding _WD and _WE as suffix, of which AHSlope and TCritic are also expanded to allow cooling and heating settings.

Known issues

- 1. BLUEWS is disabled
- 2. Observed soil moisture can not be used as an input
- 3. Wind direction is not currently downscaled so non -999 values will cause an error.

7.13.7 Version 2017b (released on 2 August 2017)

PDF Manual for v2017b

- 1. Surface-level diagnostics: T2 (air temperature at 2 m agl), Q2 (air specific humidity at 2 m agl) and U10 (wind speed at 10 m agl) added as default output.
- 2. Output in netCDF format. Please note this feature is **NOT** enabled in the public release due to the dependency of netCDF library. Assistance in enabling this feature may be requested to the development team via SUEWS mail list.
- 3. Edits to the manual.
- 4. New capabilities being developed, including two new options for calculating storage heat flux (AnOHM, ESTM) and modelling of carbon dioxide fluxes. These are currently under development and **should not be used** in Version 2017b.
- 5. Known issues
 - 1. BLUEWS parameters need to be checked
 - 2. Observed soil moisture can not be used as an input
 - 3. Wind direction is not currently downscaled so non -999 values will cause an error.

7.13.8 Version 2017a (released on 1 Feb 2017)

- 1. Changes to input file formats (including RunControl.nml and InitialConditions files) to facilitate setting up and running the model. Met forcing files no longer need two rows of -9 at the end to indicate the end of the file.
- 2. Changes to output file formats (now option to write out only a subset of variables, rather than all variables).
- 3. SUEWS can now disaggregate forcing files to the model time-step and aggregate output at the model time-step to lower resolution. This removes the need for the python wrapper used with previous versions.
- 4. InitialConditions format and requirements changed. A single file can now be provided for multiple grids. SUEWS will approximate most (but not all) of the required initial conditions if values are unknown. (However, if detailed information about the initial conditions is known, this can still be provided to and used by SUEWS.)
- 5. Leaf area index calculations now use parameters provided for each vegetated surface (previously only the deciduous tree LAI development parameters were applied to all vegetated surfaces).
- 6. For compatibility with GIS, the sign convention for longitude has been changed. Now negative values are to the west, positive values are to the east. Note this appears to have been incorrectly coded in previous versions (but may not necessarily have been problematic).
- 7. Storage heat flux calculation adapted for shorter (sub-hourly) model time-step: hysteresis calculation now based on running means over the previous hour.
- 8. Improved error handling, including separate files for serious errors (problems.txt) and less critical issues (warnings.txt).
- 9. Edits to the manual.
- 10. New capabilities being developed, including two new options for calculating storage heat flux (AnOHM, ESTM) and modelling of carbon dioxide fluxes. These are currently under development and should not be used in Version 2017a.

7.13.9 Version 2016a (released on 21 June 2016)

PDF Manual for v2016a

- 1. Major changes to the input file formats to facilitate the running of multiple grids and multiple years. Surface characteristics are provided in *SUEWS_SiteSelect.txt* and other input files are cross-referenced via codes or profile types.
- 2. The surface types have been altered:
 - Previously, grass surfaces were entered separately as irrigated grass and unirrigated grass surfaces, whilst
 the 'unmanaged' land cover fraction was assumed by the model to behave as unirrigated grass. There is
 now a single surface type for grass (total for irrigated plus unirrigated) and a new bare soil surface type.
 - The proportion of irrigated vegetation must now be specified for grass, evergreen trees and deciduous trees individually.
- 3. The entire model now runs at a time step specified by the user. Note that 5 min is strongly recommended. (Previously only the water balance calculations were done at 5 min with the energy balance calculations at 60 min).
- 4. Surface conductance now depends on the soil moisture under the vegetated surfaces only (rather than the total soil moisture for the whole study area as previously).
- 5. Albedo of evergreen trees and grass surfaces can now change with leaf area index as was previously possible for deciduous trees only.
- 6. New suggestions in Troubleshooting section.

- 7. Edits to the manual.
- 8. CBL model included.
- 9. SUEWS has been incorporated into UMEP

7.13.10 Version 2014b (released on 8 October 2014)

PDF Manual for v2014b

These affect the run configuration if previously run with older versions of the model:

- 1. New input of three additional columns in the Meteorological input file (diffusive and direct solar radiation, and wind direction)
- 2. Change of input variables in InitialConditions.nml file. Note we now refer to CT as ET (ie. Evergreen trees rather than coniferous trees)
- 3. In GridConnectionsYYYY.txt, the site names should now be without the underscore (e.g Sm and not Sm_)

Other issues:

- 1. Number of grid areas that can be modelled (for one grid, one year 120; for one grid two years 80)
- 2. Comment about Time interval of input data
- 3. Bug fix: Column headers corrected in 5 min file
- 4. Bug fix: Surface state 60 min file corrected to give the last 5 min of the hour (rather than cumulating through the hour)
- 5. Bug fix: units in the Horizontal soil water transfer
- 6. ErrorHints: More have been added to the problems.txt file.
- 7. Manual: new section on running the model appropriately
- 8. Manual: notation table updated
- 9. Possibility to add snow accumulation and melt: new paper

Järvi L, Grimmond CSB, Taka M, Nordbo A, Setälä H, and Strachan IB Version 2014: Development of the Surface Urban Energy and Water balance Scheme (SUEWS) for cold climate cities, Geosci. Model Dev. 7, 1691-1711, doi:10.5194/gmd-7-1691-Version 2014.

7.13.11 Version 2014a.1 (released 26 February 2014)

- 1. Please see the large number of changes made in the Version 2014a release.
- 2. This is a minor change to address installing the software.
- 3. Minor updates to the manual

7.13.12 Version 2014a (released on 21 February 2014)

- 1. Bug fix: External irrigation is calculated as combined from automatic and manual irrigation and during precipitation events the manual irrigation is reduced to 60% of the calculated values. In previous version of the model, the irrigation was in all cases taken 60% of the calculated value, but now this has been fixed.
- 2. In previous versions of the model, irrigation was only allowed on the irrigated grass surface type. Now, irrigation is also allowed on evergreen and deciduous trees/shrubs surfaces. These are not however treated as separate surfaces, but the amount of irrigation is evenly distributed to the whole surface type in the modelled area. The amount of water is calculated using same equation as for grass surface (equation 5 in Järvi et al. Version 2011), and the fraction of irrigated trees/shrubs (relative to the area of tree/shrubs surface) is set in the gis file (See Table 4.11: SSss_YYYY.gis)
- 3. In the current version of the model, the user is able to adjust the leaf-on and leaf-off lengths in the Functional-Types. nml file. In addition, user can choose whether to use temperature dependent functions or combination of temperature and day length (advised to be used at high-latitudes)
- 4. In the gis-file, there is a new variable Alt that is the area altitude above sea level. If not known exactly use an approximate value.
- 5. Snow removal profile has been added to the HourlyProfileSSss_YYYY.txt. Not yet used!
- 6. Model time interval has been changed from minutes to seconds. Preferred interval is 3600 seconds (1 hour)
- 7. Manual correction: input variable Soil moisture said soil moisture deficit in the manual word removed
- 8. Multiple compiled versions of SUEWS released. There are now users in Apple, Linux and Windows environments. So we will now release compiled versions for more operating systems (section 3).
- 9. There are some changes in the output file columns so please, check the respective table of each used output file.
- 10. Bug fix: with very small amount of vegetation in an area impacted Phenology for LUMPS

7.13.13 Version 2013a

- 1. Radiation selection bug fixed
- 2. Aerodynamic resistance when very low no longer reverts to neutral (which caused a large jump) but stays low
- 3. Irrigation day of week fixed
- 4. New error messages
- 5. min file now includes a decimal time column see Section 5.4 Table 5.3

7.13.14 Version 2012b

- 1. Error message generated if all the data are not available for the surface resistance calculations
- 2. Error message generated if wind data are below zero plane displacement height.
- 3. All error messages now written to 'Problem.txt' rather than embedded in an ErrorFile. Note some errors will be written and the program will continue others will stop the program.
- 4. Default variables removed (see below). Model will stop if any data are problematic. File should be checked to ensure that reasonable data are being used. If an error occurs when there should not be one let us know as it may mean we have made the limits too restrictive.

Contents no longer used File defaultFcld=0.1 defaultPres=1013 defaultRH=50 defaultT=10 defaultU=3 RunControl.nml

- Just delete lines from file
- Values you had were likely different from these example value shown here

7.13.15 Version 2012a

- 1. Improved error messages when an error is encountered. Error message will generally be written to the screen and to the file 'problems.txt'
- 2. Format of all input files have changed.
- 3. New excel spreadsheet and R programme to help prepare required data files. (Not required)
- 4. Format of coef flux (OHM) input files have changed.
 - This allows for clearer identification for users of the coefficients that are actually to be used
 - This requires an additional file with coefficients. These do not need to be adjusted but new coefficients can be added. We would appreciate receiving additional coefficients so they can be included in future releases Please email Sue.
- 5. Storage heat flux (OHM) coefficients can be changed by
 - time of year (summer, winter)
 - · surface wetness state
- 6. New files are written: DailyState.txt
 - Provides the status of variables that are updated on a daily or basis or a snapshot at the end of each day.
- 7. Surface Types
 - Clarification of surface types has been made. See GIS and OHM related files

7.13.16 Version 2011b

- 1. Storage heat flux (Qs) and anthropogenic heat flux (QF) can be set to be 0 W m⁻²
- 2. Calculation of hydraulic conductivity in soil has been improved and HydraulicConduct in SUEWSInput.nml is replaced with name SatHydraulicConduct
- 3. Following removed from HeaderInput.nml
 - HydraulicConduct
 - GrassFractionIrrigated
 - PavedFractionIrrigated
 - · TreeFractionIrrigated

The lower three are now determined from the water use behaviour used in SUEWS

- 1. Following added to HeaderInput.nml
 - SatHydraulicConduct
 - · defaultOf
 - · defaultQs
- 2. If Qs and QF are not calculated in the model but are given as an input, the missing data is replaced with the default values.

- 3. Added to SAHP input file
 - AHDIUPRF diurnal profile used if EmissionsMethod = 1

Version 2012a this became obsolete OHM file (SSss_YYYY.ohm)

7.14 Parameterisations and sub-models within SUEWS

7.14.1 Net all-wave radiation, Q*

There are several options for modelling or using observed radiation components depending on the data available. As a minimum, SUEWS requires incoming shortwave radiation to be provided.

- 1. Observed net all-wave radiation can be provided as input instead of being calculated by the model.
- 2. Observed incoming shortwave and incoming longwave components can be provided as input, instead of incoming longwave being calculated by the model.
- 3. Other data can be provided as input, such as cloud fraction (see options in *RunControl.nml*).
- 4. **NARP** (Net All-wave Radiation Parameterization) [Loridan *et al.*, 2011, Offerle *et al.*, 2003] scheme calculates outgoing shortwave and incoming and outgoing longwave radiation components based on incoming shortwave radiation, temperature, relative humidity and surface characteristics (albedo, emissivity).
- 5. SPARTACUS-Surface (SS) computes the 3D interaction of shortwave and longwave radiation with complex surface canopies, including vegetated and urban canopies (with or without vegetation). More details can be found in the SPARTACUS-Surface (SS) section.

7.14.2 Anthropogenic heat flux, Q_F

- 1. Two simple anthropogenic heat flux sub-models exist within SUEWS:
 - Järvi *et al.* [2011] approach, based on heating and cooling degree days and population density (allows distinction between weekdays and weekends).
 - Loridan et al. [2011] approach, based on a linear piece-wise relation with air temperature.
- 2. Pre-calculated values can be supplied with the meteorological forcing data, either derived from knowledge of the study site, or obtained from other models, for example:
 - LUCY [Allen et al., 2010, Lindberg et al., 2013]. A new version has been now included in UMEP. To
 distinguish it is referred to as LQF
 - **GreaterQF** [Iamarino *et al.*, 2011]. A new version has been now included in UMEP. To distinguish it is referred to as GQF

7.14.3 Storage heat flux, Q_S

- 1. Three sub-models are available to estimate the storage heat flux:
 - **OHM** (Objective Hysteresis Model) [Grimmond and Oke, 1999, Grimmond and Oke, 2002, Grimmond *et al.*, 1991]. Storage heat heat flux is calculated using empirically-fitted relations with net all-wave radiation and the rate of change in net all-wave radiation.
 - **AnOHM** (Analytical Objective Hysteresis Model) [Sun *et al.*, 2017]. OHM approach using analytically-derived coefficients. **Not recommended in this version.**

- **ESTM** (Element Surface Temperature Method) [Offerle *et al.*, 2005]. Heat transfer through urban facets (roof, wall, road, interior) is calculated from surface temperature measurements and knowledge of material properties. **Not recommended in this version.**
- 2. Alternatively, 'observed' storage heat flux can be supplied with the meteorological forcing data.

7.14.4 Turbulent heat fluxes, Q_H and Q_E

- 1. **LUMPS** (Local-scale Urban Meteorological Parameterization Scheme) [Grimmond and Oke, 2002] provides a simple means of estimating sensible and latent heat fluxes based on the proportion of vegetation in the study area.
- 2. **SUEWS** adopts a more biophysical approach to calculate the latent heat flux; the sensible heat flux is then calculated as the residual of the energy balance. The initial estimate of stability is based on the LUMPS calculations of sensible and latent heat flux. Future versions will have alternative sensible heat and storage heat flux options.

Sensible and latent heat fluxes from both LUMPS and SUEWS are provided in the *Output files*. Whether the turbulent heat fluxes are calculated using LUMPS or SUEWS can have a major impact on the results. For SUEWS, an appropriate surface conductance parameterisation is also critical [Järvi *et al.*, 2011] [Ward *et al.*, 2016]. For more details see Differences_between_SUEWS_LUMPS_and_FRAISE.

7.14.5 Water balance

The running water balance at each time step is based on the urban water balance model of Grimmond *et al.* [1986] and urban evaporation-interception scheme of Grimmond and Oke [1991].

- Precipitation is a required variable in the meteorological forcing file.
- Irrigation can be modelled [Järvi et al., 2011] or observed values can be provided if data are available.
- Drainage equations and coefficients to use must be specified in the input files.
- Soil moisture can be calculated by the model.
- Runoff is permitted:
 - between surface types within each model grid
 - between model grids (**Not available in this version.**)
 - to deep soil
 - to pipes.

7.14.6 Snowmelt

The snowmelt model is described in Järvi *et al.* [2014]. Changes since v2016a: 1) previously all surface states could freeze in 1-h time step, now the freezing surface state is calculated similarly as melt water and can freeze within the snow pack. 2) Snowmelt-related coefficients have also slightly changed (see *SUEWS_Snow.txt*).

7.14.7 Convective boundary layer

A convective boundary layer (CBL) slab model [Cleugh and Grimmond, 2001] calculates the CBL height, temperature and humidity during daytime [Onomura *et al.*, 2015].

7.14.8 Wind, Temperature and Humidity Profiles in the Roughness Sublayer

A dignostic RSL scheme for calculating the wind, temperature and humidity profiles in the roughness sublayer is implemented in 2020a following Harman and Finnigan [2007], Harman and Finnigan [2008] and Theeuwes *et al.* [2019]. An recent application of this RSL scheme can be found in Tang *et al.* [2021].

The diagnostic profiles are outputed in 30 uneven levels between the ground and forcing height, which are divided into two groups:

• One group of levels are evenly distributed within the urban canopy layer characterised by mean height of roughness elements (e.g. buildings, trees, etc.) z_H , which determines the number of layers within urban canopy n_{can} :

$$n_{can} = \begin{cases} 3 & \text{if } z_H \le 2 \text{ m} \\ 10 & \text{if } 2 \text{ m} z_H \le 10 \text{ m} \\ 15 & \text{if } z_H 10 \text{ m} \end{cases}$$

• The other levels are evenly distributed between the urban canopy layer top and forcing height.

Note: All the diagnostic profiles (wind speed, temperature and humidity) are calculated from the forcing data down into the canopy. Therefore it is assumed that the forcing temperature and humidity are above the blending height.

Common near-surface diagnostics:

- T2: air temperature at 2 m agl
- Q2: air specific humidity at 2 m agl
- RH2: air relative humidity at 2 m agl
- U10: wind speed at 10 m agl

are calculated by the RSL scheme by interpolating RSL profile results to the corresponding diagnostic heights.

7.14.9 SPARTACUS-Surface (SS)

Warning: This module is highly experimental and not yet fully tested: description here is not yet complete, either. Please refer to the original SPARTACUS-Surface page for more details, which may differ from the coupled version in SUEWS described below due to possibly different implementations.

Note: Future Work

- New SUEWS input table containing SPARTACUS profiles
- · Add check for consistency of SUEWS and SS surface fractions
- · Include snow

Introduction to SS

The SPARTACUS-Surface module computes the 3D interaction of shortwave and longwave radiation with complex surface canopies, including vegetated and urban canopies (with or without vegetation).

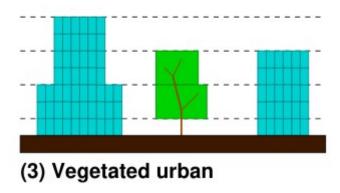


Fig. 7.4: Multi-layer structure (horizontal dashed lines) used in SS to characterise differences in the canopy (Cyan building, Green – vegetation). Source: SPARTACUS-Surface GH page

It uses a multi-layer description of the canopy (Fig. 7.4), with a statistical description of the horizontal distribution of trees and buildings. Assumptions include:

- Trees are randomly distributed.
- Wall-to-wall separation distances follow an exponential probability distribution.
- From a statistical representation of separation distances one can determine the probabilities of light being intercepted by trees, walls and the ground.

In the tree canopy (i.e. between buildings) there are two or three regions (based on user choice) (Fig. 7.5): clear-air and either one vegetated region or two vegetated regions of equal fractional cover but different extinction coefficient. Assumptions include:

- The rate of exchange of radiation between the clear and vegetated parts of a layer are assumed to be proportional to the length of the interface between them.
- Likewise for the rate of interception of radiation by building walls.

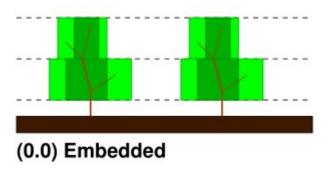


Fig. 7.5: Areas between trees. Source: SPARTACUS-Surface GH page

Each time light is intercepted it can undergo diffuse or specular reflection, be absorbed or be transmitted (as diffuse radiation). The probabilities for buildings and the ground are determined by albedos and emissivities, and for trees are determined by extinction coefficients and single scattering albedos.

SUEWS-SS Implementation

- Maximum of 15 vertical layers.
- Building and tree fractions, building and tree dimensions, building albedo and emissivity, and diffuse versus specular reflection, can be treated as vertically heterogenous or uniform with height depending on parameter choices.
- As tree fraction increases towards 1 it is assumed that the tree crown merges when calculating tree perimeters.
- Representing horizontal heterogeneity in the tree crowns is optional. When represented it is assumed that heterogeneity in leaf area index is between the core and periphery of the tree, not between trees.
- When calculating building perimeters it is assumed that buildings do not touch (analogous to crown shyness) as building fraction increases towards 1.
- Vegetation extinction coefficients (calculated from leaf area index, LAI) are assumed to be the same in all vegetated layers.
- Building facet and ground temperatures are equal to SUEWS TSfc_C (i.e.surface temperature) [#estm_coupling]_.
- Leaf temperatures are equal to SUEWS temp C (i.e. air temperature within the canopy) [#rsl layers].
- Ground albedo and emissivity are an area weighted average of SUEWS paved, grass, bare soil and water values.
- Inputs from SUEWS: sfr, zenith_deg, TSfc_C, avKdn, 1down, temp_c, alb_next, emis, LAI_id.
- SS specific input parameters: read in from SUEWS_SPARTACUS.nml.
- Outputs used by SUEWS: alb_spc, emis_spc, lw_emission_spc.
- Although the radiation is calculated in multiple vertical layers within SS it is only the upwelling top-of-canopy fluxes: alb_spc*avKdn, (emis_spc)*ldown, and lw_emission_spc that are used by SUEWS.
- Output variables (including multi-layer ones) are in SUEWS-SS output file SSss_YYYY_SPARTACUS.txt. [#ss_output]_

RSL and SS Canopy Representation Comparison

- The RSL has 30 levels but when the average building height is <2 m, < 12 m and > 12 m there are 3, 10 and 15 evenly spaced layers in the canopy.
- The remaining levels are evenly spaced up to the forcing level (Fig. 7.6).
- The buildings are assumed to be uniform height.

A maximum of 15 layers are used by SS (vertial_layers_SS-RSL), with the top of the highest layer at the tallest building height. The layer heights are user defined and there is no limit on maximum building height. The buildings are allowed to vary in height.

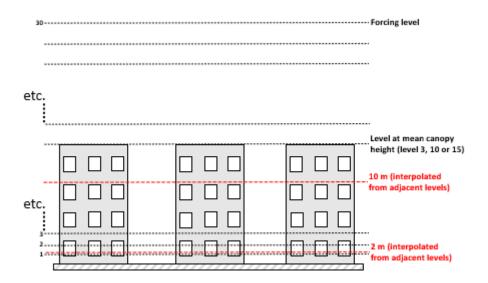


Fig. 7.6: SUEWS-RSL module assumes the RSL has 30 layers that are spread between the canopy and within the atmosphere above



Fig. 7.7: Vertical layers used by SS

How to use SUEWS-SS

Inputs

To run SUEWS-SS the SS specific files that need to be modified are:

- RunControl.nml (see NetRadiationMethod)
- SUEWS_SPARTACUS.nml

Note: Non-SS specific SUEWS input file parameters also need to have appropriate values. For example, LAI, albedos and emissivities are used by SUEWS-SS as explained in *More background information*.

Outputs

See SSss_YYYY_SPARTACUS_TT.txt.

More background information

Vegetation single scattering albedo (SSA)

The **shortwave** broadband SSA is equal to the sum of the broadband reflectance R and broadband transmittance T [Yang et al., 2020]. Given reflectance r and transmittance t spectra the SSA is calculated to modify equation

$$\mathrm{SSA} = \frac{\int_{\sim 400 \text{ nm}}^{\sim 2200 \text{ nm}} r \times S \mathrm{d}}{\int_{\sim 400 \text{ nm}}^{\sim 2200 \text{ nm}} S \mathrm{d}} + \frac{\int_{\sim 400 \text{ nm}}^{\sim 2200 \text{ nm}} t \times S \mathrm{d}}{\int_{\sim 400 \text{ nm}}^{\sim 2200 \text{ nm}} S \mathrm{d}}$$

where S clear-sky surface spectrum :numfig: rami5 $^{\circ}$.

The integrals are performed between 400 nm and 2200 nm because this is the spectral range that RAMI5⁵ Järvselja birch stand forest spectra are available. This is a reasonable approximation since it is where the majority of incoming SW energy resides (as seen from the clear-sky surface spectrum in Fig. 6).

Users can use the default value of 0.46, from RAMI5 Järvselja birch stand forest tree types or calculate their own SSA (Fig. 7.8). There are more tree R and T profiles here⁵,

The **longwave** broadband SSA could be calculated in the same way but with the integral over the thermal infra-red (8-14 m), S replaced with the Plank function at Earth surface temperature, and r and t for the spectra for the thermal infra-red. The approximation that R + T = 2R can be made. r for different materials is available at https://speclib.jpl.nasa.gov/library. The peak in the thermal infra-red is ~10 m. Based on inspection of r profiles for several tree species SSA=0.06 is the default value.

Building albedo and emissivity

Use broadband values in Table C.1 of Kotthaus *et al.* [2014]. Full spectra can be found in the spectral library documentation.

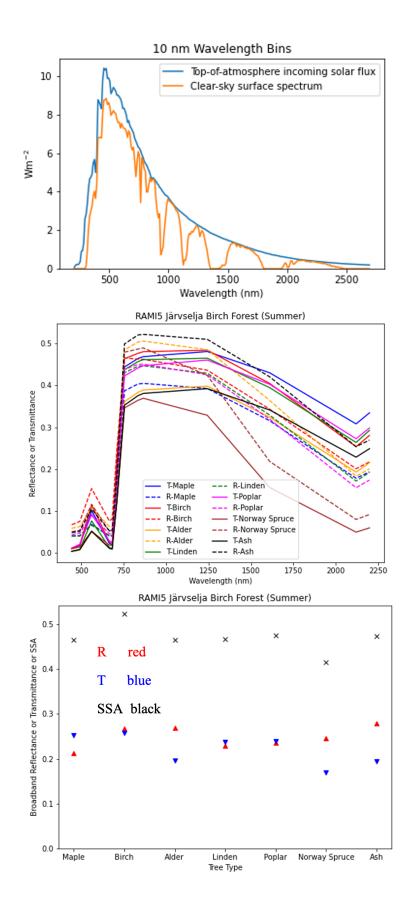


Fig. 7.8: RAMI5⁵ data used to calculate R, T, and SSA, and R, T, and SSA values: (a) top-of-atmosphere incoming 362 flux and clear-sky surface spectrum [Hogan and Matricardi, 2020] (b) RAMI5 7 and SSA values broadband R, T, and SSA values.

Ground albedo and emissivity

In SUEWS-SS this is calculated as:

where is either the ground albedo or emissivity.

values for the surfaces should be set by specifying surface codes in *SUEWS_SiteSelect.txt*. Codes should correspond to existing appropriate surfaces in *SUEWS_NonVeg.txt* and *SUEWS_NonVeg.txt*. Alternatively, new surfaces can be made in *SUEWS_NonVeg.txt* and *SUEWS_NonVeg.txt* with values obtained for example from the spectral library.

Consistency of SUEWS and SS parameters

SUEWS building and tree (evergreen+deciduous) fractions in *SUEWS_SiteSelect.txt* should be consistent with the *SUEWS_SPARTACUS.nml* building_frac and veg_frac of the lowest model layer.

Leaf area index (LAI)

The total vertically integrated LAI provided by SUEWS is used in SS to determine the LAI and vegetation extinction coefficient in each layer. Surface codes in SUEWS_SiteSelect.txt should correspond to appropriate LAI values in SUEWS_Veg.txt.

7.15 SUEWS-related Publications

Note:

- 1. If you have papers to add to this list please let us and others know via the email list.
- 2. The following list is sorted in a reversed chronological order.
- Tang, Yihao, Sun, Ting, Luo, Zhiwen, Omidvar, Hamidreza, Theeuwes, Natalie, Xie, Xiaoxiong, Xiong, Jie, Yao, Runming, and Grimmond, Sue. Urban meteorological forcing data for building energy simulations. *Building and Environment*, 204:108088, October 2021. doi:10.1016/j.buildenv.2021.108088.
- Theeuwes, Natalie E., Ronda, Reinder J., Harman, Ian N., Christen, Andreas, and Grimmond, C. Sue B. Parametrizing horizontally-averaged wind and temperature profiles in the urban roughness sublayer. *Boundary-Layer Meteorol*, 173(3):321–348, September 2019. doi:10.1007/s10546-019-00472-1.
- Järvi, Leena, Havu, Minttu, Ward, Helen C., Bellucco, Veronica, McFadden, Joseph P., Toivonen, Tuuli, Heikinheimo, Vuokko, Kolari, Pasi, Riikonen, Anu, and Grimmond, C. Sue B. Spatial modeling of Local-Scale biogenic and anthropogenic carbon dioxide emissions in Helsinki. *J. Geophys. Res. Atmos.*, 124(15):8363–8384, August 2019. doi:10.1029/2018jd029576.
- Sun, Ting and Grimmond, Sue. A python-enhanced urban land surface model SuPy (SUEWS in python, v2019.2): Development, deployment and demonstration. *Geosci. Model Dev.*, 12(7):2781–2795, July 2019. doi:10.5194/gmd-12-2781-2019.
- Kokkonen, Tom V., Grimmond, Sue, Murto, Sonja, Liu, Huizhi, Sundström, Anu-Maija, and Järvi, Leena. Simulation of the radiative effect of haze on the urban hydrological cycle using reanalysis data in Beijing. *Atmos. Chem. Phys.*, 19(10):7001–7017, May 2019. doi:10.5194/acp-19-7001-2019.

- Kokkonen, T. V., Grimmond, C. S. B., Christen, A., Oke, T. R., and Järvi, L. Changes to the water balance over a century of urban development in two neighborhoods: Vancouver, Canada. *Water Resour. Res.*, 54(9):6625–6642, September 2018. doi:10.1029/2017wr022445.
- Kokkonen, T.V., Grimmond, C.S.B., Räty, O., Ward, H.C., Christen, A., Oke, T.R., Kotthaus, S., and Järvi, L. Sensitivity of surface urban energy and water balance scheme (SUEWS) to downscaling of reanalysis forcing data. *Urban Clim.*, 23:36–52, March 2018. ICUC9: The 9th International Conference on Urban Climate. doi:10.1016/j.uclim.2017.05.001.
- Ao, Xiangyu, Grimmond, C. S. B., Ward, H. C., Gabey, A. M., Tan, Jianguo, Yang, Xiu-Qun, Liu, Dongwei, Zhi, Xing, Liu, Hongya, and Zhang, Ning. Evaluation of the surface urban energy and water balance scheme (SUEWS) at a dense urban site in shanghai: Sensitivity to anthropogenic heat and irrigation. *J. Hydrometeorol.*, 19(12):1983–2005, December 2018. doi:10.1175/jhm-d-18-0057.1.
- Ward, H.C. and Grimmond, C.S.B. Assessing the impact of changes in surface cover, human behaviour and climate on energy partitioning across greater London. *Landscape Urban Plan.*, 165:142–161, September 2017. doi:10.1016/j.landurbplan.2017.04.001.
- Sun, Ting, Wang, Zhi-Hua, Oechel, Walter C., and Grimmond, Sue. The analytical objective hysteresis model (AnOHM v1.0): Methodology to determine bulk storage heat flux coefficients. *Geosci. Model Dev.*, 10(7):2875–2890, July 2017. doi:10.5194/gmd-10-2875-2017.
- Järvi, L., Grimmond, C. S. B., McFadden, J. P., Christen, A., Strachan, I. B., Taka, M., Warsta, L., and Heimann, M. Warming effects on the urban hydrology in cold climate regions. *Sci Rep*, 7(1):5833, July 2017. doi:10.1038/s41598-017-05733-y.
- Ward, H.C., Kotthaus, S., Järvi, L., and Grimmond, C.S.B. Surface urban energy and water balance scheme (SUEWS): Development and evaluation at two UK sites. *Urban Clim.*, 18:1–32, December 2016. doi:10.1016/j.uclim.2016.05.001.
- Ao, Xiangyu, Grimmond, C. S. B., Liu, Dongwei, Han, Zhihui, Hu, Ping, Wang, Yadong, Zhen, Xinrong, and Tan, Jianguo. Radiation fluxes in a business district of shanghai, china. *J. Appl. Meteorol. Clim.*, 55(11):2451–2468, November 2016. doi:10.1175/jamc-d-16-0082.1.
- Onomura, S., Grimmond, C.S.B., Lindberg, F., Holmer, B., and Thorsson, S. Meteorological forcing data for urban outdoor thermal comfort models from a coupled convective boundary layer and surface energy balance scheme. *Urban Clim.*, 11:1–23, March 2015. doi:10.1016/j.uclim.2014.11.001.
- Järvi, L., Grimmond, C. S. B., Taka, M., Nordbo, A., Setälä, H., and Strachan, I. B. Development of the surface urban energy and water balance scheme (SUEWS) for cold climate cities. *Geosci. Model Dev.*, 7(4):1691–1711, August 2014. doi:10.5194/gmd-7-1691-2014.
- Lindberg, F., Grimmond, C.S.B., Yogeswaran, N., Kotthaus, S., and Allen, L. Impact of city changes and weather on anthropogenic heat flux in Europe 1995–2015. *Urban Clim.*, 4:1–15, July 2013. doi:10.1016/j.uclim.2013.03.002.
- Loridan, Thomas and Grimmond, C. S. B. Characterization of energy flux partitioning in urban environments: Links with surface seasonal properties. *J. Appl. Meteorol. Clim.*, 51(2):219–241, February 2012. doi:10.1175/jamc-d-11-038.1.
- Iamarino, Mario, Beevers, Sean, and Grimmond, C. S. B. High-resolution (space, time) anthropogenic heat emissions: London 1970-2025. *Int. J. Climatol.*, 32(11):1754–1767, July 2011. doi:10.1002/joc.2390.
- Järvi, L., Grimmond, C.S.B., and Christen, A. The surface urban energy and water balance scheme (SUEWS): Evaluation in Los Angeles and Vancouver. *J. Hydrol.*, 411(3-4):219–237, December 2011. doi:10.1016/j.jhydrol.2011.10.001.
- Loridan, Thomas, Grimmond, C. S. B., Offerle, Brian D., Young, Duick T., Smith, Thomas E. L., Järvi, Leena, and Lindberg, Fredrik. Local-scale urban meteorological parameterization scheme (LUMPS): Longwave radiation parameterization and seasonality-related developments. *J. Appl. Meteorol. Clim.*, 50(1):185–202, January 2011. doi:10.1175/2010jamc2474.1.

- Lindberg, Fredrik and Grimmond, C. S. B. The influence of vegetation and building morphology on shadow patterns and mean radiant temperatures in urban areas: Model development and evaluation. *Theor Appl Climatol*, 105(3-4):311–323, January 2011. doi:10.1007/s00704-010-0382-8.
- Allen, L., Lindberg, F., and Grimmond, C. S. B. Global to city scale urban anthropogenic heat flux: Model and variability. *Int. J. Climatol.*, 31(13):1990–2005, September 2010. doi:10.1002/joc.2210.
- Lindberg, Fredrik, Holmer, Björn, and Thorsson, Sofia. SOLWEIG 1.0 modelling spatial variations of 3D radiant fluxes and mean radiant temperature in complex urban settings. *Int J Biometeorol*, 52(7):697–713, June 2008. doi:10.1007/s00484-008-0162-7.
- Offerle, B., Grimmond, C. S. B., and Fortuniak, K. Heat storage and anthropogenic heat flux in relation to the energy balance of a central European city centre. *Int. J. Climatol.*, 25(10):1405–1419, August 2005. doi:10.1002/joc.1198.
- Offerle, B., Grimmond, C. S. B., and Oke, T. R. Parameterization of net all-wave radiation for urban areas. *J. Appl. Meteor.*, 42(8):1157–1173, August 2003. doi:10.1175/1520-0450(2003)042<1157:ponarf>2.0.co;2.
- Grimmond, C. S. B. and Oke, T. R. Turbulent heat fluxes in urban areas: Observations and a local-scale urban meteorological parameterization scheme (LUMPS). *J. Appl. Meteor.*, 41(7):792–810, July 2002. doi:10.1175/1520-0450(2002)041<0792:thfiua>2.0.co:2.
- Grimmond, C. S. B. and Oke, T. R. Heat storage in urban areas: Local-scale observations and evaluation of a simple model. *J. Appl. Meteor.*, 38(7):922–940, July 1999. doi:10.1175/1520-0450(1999)038<0922:hsiual>2.0.co;2.
- Grimmond, C. S. B. and Oke, T. R. An evapotranspiration-interception model for urban areas. *Water Resour. Res.*, 27(7):1739–1755, July 1991. doi:10.1029/91wr00557.
- Grimmond, C.S.B., Cleugh, H.A., and Oke, T.R. An objective urban heat storage model and its comparison with other schemes. *Atmospheric Environment. Part B. Urban Atmosphere*, 25(3):311–326, January 1991. doi:10.1016/0957-1272(91)90003-w.
- Grimmond, C. S. B., Oke, T. R., and Steyn, D. G. Urban water balance: 1. a model for daily totals. Water Resour. Res., 22(10):1397–1403, September 1986. doi:10.1029/wr022i010p01397.

7.16 References

7.16. References 367

- [Allen et al. 2010] Allen, L., Lindberg, F., and Grimmond, C. S. B. Global to city scale urban anthropogenic heat flux: Model and variability. *Int. J. Climatol.*, 31(13):1990–2005, September 2010. doi:10.1002/joc.2210.
- [Anandakumar 1999] Anandakumar, K. A study on the partition of net radiation into heat fluxes on a dry asphalt surface. *Atmos. Environ.*, 33(24-25):3911–3918, October 1999. doi:10.1016/s1352-2310(99)00133-8.
- [Asaeda and Ca 1993] Asaeda, Takashi and Ca, Vu Thanh. The subsurface transport of heat and moisture and its effect on the environment: A numerical model. *Boundary-Layer Meteorol*, 65(1-2):159–179, July 1993. doi:10.1007/bf00708822.
- [Auer 1974] Auer, August H. The rain versus snow threshold temperatures. *Weatherwise*, 27(2):67–67, April 1974. doi:10.1080/00431672.1974.9931684.
- [Bellucco et al. 2017] Bellucco, Veronica, Marras, Serena, Grimmond, C. Susan B., Järvi, Leena, Sirca, Costantino, and Spano, Donatella. Modelling the biogenic CO 2 exchange in urban and non-urban ecosystems through the assessment of light-response curve parameters. *Agr. Forest Meteorol.*, 236:113–122, April 2017. doi:10.1016/j.agrformet.2016.12.011.
- [Berrizbeitia et al. 2020] Berrizbeitia, Saioa Etxebarria, Jadraque Gago, Eulalia, and Muneer, Tariq. Empirical Models for the Estimation of Solar Sky-Diffuse Radiation. A Review and Experimental Analysis. *Energies*, 13(3):701, Feb 2020. doi:10.3390/en13030701.
- [Best and Grimmond 2014] Best, M.J. and Grimmond, C.S.B. Importance of initial state and atmospheric conditions for urban land surface models' performance. *Urban Clim.*, 10:387–406, December 2014. doi:10.1016/j.uclim.2013.10.006.
- [Breuer et al. 2003] Breuer, Lutz, Eckhardt, Klaus, and Frede, Hans-Georg. Plant parameter values for models in temperate climates. *Ecol. Model.*, 169(2-3):237–293, November 2003. doi:10.1016/s0304-3800(03)00274-6.
- [Businger et al. 1971] Businger, J. A., Wyngaard, J. C., Izumi, Y., and Bradley, E. F. Flux-profile relationships in the atmospheric surface layer. *J. Atmos. Sci.*, 28(2):181–189, March 1971. doi:10.1175/1520-0469(1971)028<0181:fprita>2.0.co;2.
- [Calder and Wright 1986] Calder, I. R. and Wright, I. R. Gamma ray attenuation studies of interception from sitka spruce: Some evidence for an additional transport mechanism. *Water Resour. Res.*, 22(3):409–417, March 1986. doi:10.1029/wr022i003p00409.
- [Campbell and Norman 1998] Campbell, Gaylon S. and Norman, John M. *Wind*, chapter Wind, pages 63–75. Springer New York, New York, NY, 1998. doi:10.1007/978-1-4612-1626-1_5.
- [Cleugh and Grimmond 2001] Cleugh, H. A. and Grimmond, C. S. B. Modelling regional scale surface energy exchanges and cbl growth in a heterogeneous, urban-rural landscape. *Bound.-Layer Meteorol.*, 98(1):1–31, January 2001. doi:10.1023/a:1018798928158.
- [Davies and Hollis 1981] Davies, Hilary and Hollis, T. Measurements of rainfall-runoff volume relationships and water balance for roofs and roads. In *Second International Conference on Urban Storm Drainage*, volume 434, 441. 1981.
- [Doll et al. 1985] Doll, Dennis, Ching, J. K. S., and Kaneshiro, Jack. Parameterization of subsurface heating for soil and concrete using net radiation data. *Boundary-Layer Meteorol*, 32(4):351–372, August 1985. doi:10.1007/bf00122000.
- [Dyer 1974] Dyer, A. J. A review of flux-profile relationships. *Boundary-Layer Meteorol*, 7(3):363–372, November 1974. doi:10.1007/bf00240838.
- [Falk and Niemczynowicz 1978] Falk, J. and Niemczynowicz, J. Characteristics of the above ground runoff in sewered catchments. In *Proc. Internat. Conf. on Urban Storm Drainage*, 159–171. John Wiley and Sons, New York, 1978.

- [Flanagan et al. 2002] Flanagan, Lawrence B., Wever, Linda A., and Carlson, Peter J. Seasonal and interannual variation in carbon dioxide exchange and carbon balance in a northern temperate grassland. *Global Change Biol.*, 8(7):599–615, June 2002. doi:10.1046/j.1365-2486.2002.00491.x.
- [Fuchs and Hadas 1972] Fuchs, Marcel and Hadas, Amos. The heat flux density in a non-homogeneous bare loessial soil. *Boundary-Layer Meteorol*, 3(2):191–200, December 1972. doi:10.1007/bf02033918.
- [Grimmond 1992] Grimmond, C. S. B. The suburban energy balance: Methodological considerations and results for a mid-latitude west coast city under winter and spring conditions. *Int. J. Climatol.*, 12(5):481–497, July 1992. doi:10.1002/joc.3370120506.
- [Grimmond and Oke 1991] Grimmond, C. S. B. and Oke, T. R. An evapotranspiration-interception model for urban areas. *Water Resour. Res.*, 27(7):1739–1755, July 1991. doi:10.1029/91wr00557.
- [Grimmond and Oke 1999] Grimmond, C. S. B. and Oke, T. R. Heat storage in urban areas: Local-scale observations and evaluation of a simple model. *J. Appl. Meteor.*, 38(7):922–940, July 1999. doi:10.1175/1520-0450(1999)038<0922:hsiual>2.0.co;2.
- [Grimmond and Oke 2002] Grimmond, C. S. B. and Oke, T. R. Turbulent heat fluxes in urban areas: Observations and a local-scale urban meteorological parameterization scheme (LUMPS). *J. Appl. Meteor.*, 41(7):792–810, July 2002. doi:10.1175/1520-0450(2002)041<0792:thfiua>2.0.co;2.
- [Grimmond et al. 1986] Grimmond, C. S. B., Oke, T. R., and Steyn, D. G. Urban water balance: 1. a model for daily totals. *Water Resour. Res.*, 22(10):1397–1403, September 1986. doi:10.1029/wr022i010p01397.
- [Grimmond et al. 1991] Grimmond, C.S.B., Cleugh, H.A., and Oke, T.R. An objective urban heat storage model and its comparison with other schemes. *Atmospheric Environment. Part B. Urban Atmosphere*, 25(3):311–326, January 1991. doi:10.1016/0957-1272(91)90003-w.
- [Halldin et al. 1979] Halldin, S., Grip, H., and Perttu, K. Model for energy exchange of a pine forest canopy. In *Comparison of Forest Water and Energy Exchange Models*, pages 59–75. Elsevier, 1979. doi:10.1016/b978-0-444-41844-9.50012-3.
- [Harman and Finnigan 2007] Harman, Ian N. and Finnigan, John J. A simple unified theory for flow in the canopy and roughness sublayer. *Boundary-Layer Meteorol*, 123(2):339–363, March 2007. doi:10.1007/s10546-006-9145-6.
- [Harman and Finnigan 2008] Harman, Ian N. and Finnigan, John J. Scalar concentration profiles in the canopy and roughness sublayer. *Boundary-Layer Meteorol*, 129(3):323–351, October 2008. doi:10.1007/s10546-008-9328-4.
- [Hogan 2019] Hogan, Robin J. Flexible Treatment of Radiative Transfer in Complex Urban Canopies for Use in Weather and Climate Models. *Boundary-Layer Meteorol.*, 173(1):53–78, Oct 2019. doi:10.1007/s10546-019-00457-0.
- [Hogan and Matricardi 2020] Hogan, Robin J. and Matricardi, Marco. Evaluating and improving the treatment of gases in radiation schemes: the Correlated K-Distribution Model Intercomparison Project (CKDMIP). *Geosci. Model Dev.*, 13(12):6501–6521, Dec 2020. doi:10.5194/gmd-13-6501-2020.
- [Hogan et al. 2018] Hogan, Robin J., Quaife, Tristan, and Braghiere, Renato. Fast matrix treatment of 3-D radiative transfer in vegetation canopies: SPARTACUS-Vegetation 1.1. *Geosci. Model Dev.*, 11(1):339–350, Jan 2018. doi:10.5194/gmd-11-339-2018.
- [Högström 1988] Högström, Ulf. Non-dimensional wind and temperature profiles in the atmospheric surface layer: A re-evaluation. *Boundary-Layer Meteorol*, 42(1-2):55–78, January 1988. doi:10.1007/bf00119875.
- [Iamarino et al. 2011] Iamarino, Mario, Beevers, Sean, and Grimmond, C. S. B. High-resolution (space, time) anthropogenic heat emissions: London 1970-2025. *Int. J. Climatol.*, 32(11):1754–1767, July 2011. doi:10.1002/joc.2390.

- [Jarvis 1976] Jarvis, P. G. The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. *Phil. Trans. R. Soc. Lond. B*, 273(927):593–610, February 1976. doi:10.1098/rstb.1976.0035.
- [Järvi et al. 2014] Järvi, L., Grimmond, C. S. B., Taka, M., Nordbo, A., Setälä, H., and Strachan, I. B. Development of the surface urban energy and water balance scheme (SUEWS) for cold climate cities. *Geosci. Model Dev.*, 7(4):1691–1711, August 2014. doi:10.5194/gmd-7-1691-2014.
- [Järvi et al. 2011] Järvi, L., Grimmond, C.S.B., and Christen, A. The surface urban energy and water balance scheme (SUEWS): Evaluation in Los Angeles and Vancouver. *J. Hydrol.*, 411(3-4):219–237, December 2011. doi:10.1016/j.jhydrol.2011.10.001.
- [Järvi et al. 2012] Järvi, L., Nordbo, A., Junninen, H., Riikonen, A., Moilanen, J., Nikinmaa, E., and Vesala, T. Seasonal and annual variation of carbon dioxide surface fluxes in helsinki, finland, in 2006–2010. *Atmos. Chem. Phys.*, 12(18):8475–8489, September 2012. doi:10.5194/acp-12-8475-2012.
- [Järvi et al. 2019] Järvi, Leena, Havu, Minttu, Ward, Helen C., Bellucco, Veronica, McFadden, Joseph P., Toivonen, Tuuli, Heikinheimo, Vuokko, Kolari, Pasi, Riikonen, Anu, and Grimmond, C. Sue B. Spatial modeling of Local-Scale biogenic and anthropogenic carbon dioxide emissions in Helsinki. *J. Geophys. Res. Atmos.*, 124(15):8363–8384, August 2019. doi:10.1029/2018jd029576.
- [Kanda et al. 2007] Kanda, M., Kanega, M., Kawai, T., Moriwaki, R., and Sugawara, H. Roughness lengths for momentum and heat derived from outdoor urban scale models. *J. Appl. Meteorol. Clim.*, 46(7):1067–1079, July 2007. doi:10.1175/jam2500.1.
- [Kawai et al. 2009] Kawai, Toru, Ridwan, Mohammad Kholid, and Kanda, Manabu. Evaluation of the simple urban energy balance model using selected data from 1-yr flux observations at two cities. *J. Appl. Meteorol. Clim.*, 48(4):693–715, April 2009. doi:10.1175/2008jamc1891.1.
- [Kent et al. 2017a] Kent, Christoph W., Grimmond, Sue, Barlow, Janet, Gatey, David, Kotthaus, Simone, Lindberg, Fredrik, and Halios, Christos H. Evaluation of urban local-scale aerodynamic parameters: Implications for the vertical profile of wind speed and for source areas. *Boundary-Layer Meteorol*, 164(2):183–213, April 2017. doi:10.1007/s10546-017-0248-z.
- [Kent et al. 2017b] Kent, Christoph W., Grimmond, Sue, and Gatey, David. Aerodynamic roughness parameters in cities: Inclusion of vegetation. *J. Wind Eng. Ind. Aerod.*, 169:168–176, October 2017. doi:10.1016/j.jweia.2017.07.016.
- [Kokkonen et al. 2018a] Kokkonen, T. V., Grimmond, C. S. B., Christen, A., Oke, T. R., and Järvi, L. Changes to the water balance over a century of urban development in two neighborhoods: Vancouver, Canada. *Water Resour. Res.*, 54(9):6625–6642, September 2018. doi:10.1029/2017wr022445.
- [Kokkonen et al. 2018b] Kokkonen, T.V., Grimmond, C.S.B., Räty, O., Ward, H.C., Christen, A., Oke, T.R., Kotthaus, S., and Järvi, L. Sensitivity of surface urban energy and water balance scheme (SUEWS) to downscaling of reanalysis forcing data. *Urban Clim.*, 23:36–52, March 2018. ICUC9: The 9th International Conference on Urban Climate. doi:10.1016/j.uclim.2017.05.001.
- [Konarska et al. 2013] Konarska, Janina, Lindberg, Fredrik, Larsson, Annika, Thorsson, Sofia, and Holmer, Björn. Transmissivity of solar radiation through crowns of single urban trees—application for outdoor thermal comfort modelling. *Theor Appl Climatol*, 117(3-4):363–376, September 2013. doi:10.1007/s00704-013-1000-3.
- [Kotthaus et al. 2014] Kotthaus, Simone, Smith, Thomas E. L., Wooster, Martin J., and Grimmond, C. S. B. Derivation of an urban materials spectral library through emittance and reflectance spectroscopy. *ISPRS J. Photogramm. Remote Sens.*, 94:194–212, Aug 2014. doi:10.1016/j.isprsjprs.2014.05.005.
- [Lindberg et al. 2013] Lindberg, F., Grimmond, C.S.B., Yogeswaran, N., Kotthaus, S., and Allen, L. Impact of city changes and weather on anthropogenic heat flux in Europe 1995–2015. *Urban Clim.*, 4:1–15, July 2013. doi:10.1016/j.uclim.2013.03.002.

- [Lindberg and Grimmond 2011] Lindberg, Fredrik and Grimmond, C. S. B. The influence of vegetation and building morphology on shadow patterns and mean radiant temperatures in urban areas: Model development and evaluation. *Theor Appl Climatol*, 105(3-4):311–323, January 2011. doi:10.1007/s00704-010-0382-8.
- [Lindberg et al. 2008] Lindberg, Fredrik, Holmer, Björn, and Thorsson, Sofia. SOLWEIG 1.0 modelling spatial variations of 3D radiant fluxes and mean radiant temperature in complex urban settings. *Int J Biometeo-rol*, 52(7):697–713, June 2008. doi:10.1007/s00484-008-0162-7.
- [Loridan and Grimmond 2012] Loridan, Thomas and Grimmond, C. S. B. Characterization of energy flux partitioning in urban environments: Links with surface seasonal properties. *J. Appl. Meteorol. Clim.*, 51(2):219–241, February 2012. doi:10.1175/jamc-d-11-038.1.
- [Loridan et al. 2011] Loridan, Thomas, Grimmond, C. S. B., Offerle, Brian D., Young, Duick T., Smith, Thomas E. L., Järvi, Leena, and Lindberg, Fredrik. Local-scale urban meteorological parameterization scheme (LUMPS): Longwave radiation parameterization and seasonality-related developments. *J. Appl. Meteorol. Clim.*, 50(1):185–202, January 2011. doi:10.1175/2010jamc2474.1.
- [Macdonald et al. 1998] Macdonald, R.W., Griffiths, R.F., and Hall, D.J. An improved method for the estimation of surface roughness of obstacle arrays. *Atmos. Environ.*, 32(11):1857–1864, June 1998. doi:10.1016/s1352-2310(97)00403-2.
- [McCaughey 1985] McCaughey, J. H. Energy balance storage terms in a mature mixed forest at petawawa, Ontario? a case study. *Boundary-Layer Meteorol*, 31(1):89–101, January 1985. doi:10.1007/bf00120036.
- [Meyn and Oke 2009] Meyn, Stephanie K. and Oke, T.R. Heat fluxes through roofs and their relevance to estimates of urban heat storage. *Energ. Buildings*, 41(7):745–752, July 2009. doi:10.1016/j.enbuild.2009.02.005.
- [NARITA et al. 1984] NARITA, Ken-ichi, SEKINE, Takeshi, and TOKUOKA, Toshikazu. Thermal properties of urban surface materials. *Geogr. Rev. Jpn, Ser. A, Chirigaku Hyoron*, 57(9):639–651, September 1984. doi:10.4157/grj1984a.57.9 639.
- [Novak 1981] Novak, Michael David. *The moisture and thermal regimes of a bare soil in the lower Fraser Valley during spring*. PhD thesis, University of British Columbia, 1981. doi:10.14288/1.0095282.
- [Nunez and Oke 1977] Nunez, M. and Oke, T. R. The energy balance of an urban canyon. *J. Appl. Meteor.*, 16(1):11–19, January 1977. doi:10.1175/1520-0450(1977)016<0011:teboau>2.0.co;2.
- [Offerle et al. 2005] Offerle, B., Grimmond, C. S. B., and Fortuniak, K. Heat storage and anthropogenic heat flux in relation to the energy balance of a central European city centre. *Int. J. Climatol.*, 25(10):1405–1419, August 2005. doi:10.1002/joc.1198.
- [Offerle et al. 2003] Offerle, B., Grimmond, C. S. B., and Oke, T. R. Parameterization of net all-wave radiation for urban areas. *J. Appl. Meteor.*, 42(8):1157–1173, August 2003. doi:10.1175/1520-0450(2003)042<1157:ponarf>2.0.co;2.
- [Oke 2002] Oke, T. R. *Boundary Layer Climates*. Routledge, September 2002. ISBN 9781134951345. doi:10.4324/9780203407219.
- [Onomura et al. 2015] Onomura, S., Grimmond, C.S.B., Lindberg, F., Holmer, B., and Thorsson, S. Meteorological forcing data for urban outdoor thermal comfort models from a coupled convective boundary layer and surface energy balance scheme. *Urban Clim.*, 11:1–23, March 2015. doi:10.1016/j.uclim.2014.11.001.
- [Reindl et al. 1990] Reindl, D.T., Beckman, W.A., and Duffie, J.A. Diffuse fraction correlations. *Sol. Energy*, 45(1):1–7, 1990. doi:10.1016/0038-092x(90)90060-p.
- [Ruimy et al. 1995] Ruimy, A., Jarvis, P.G., Baldocchi, D.D., and Saugier, B. CO2 fluxes over plant canopies and solar radiation: A review. In *Advances in Ecological Research*, pages 1–68. Elsevier, 1995. doi:10.1016/s0065-2504(08)60063-x.
- [Sailor and Lu 2004] Sailor, David J. and Lu, Lu. A top–down methodology for developing diurnal and seasonal anthropogenic heating profiles for urban areas. *Atmos. Environ.*, 38(17):2737–2748, June 2004. doi:10.1016/j.atmosenv.2004.01.034.

- [Sailor and Vasireddy 2006] Sailor, David J. and Vasireddy, Chittaranjan. Correcting aggregate energy consumption data to account for variability in local weather. *Environ. Modell. Softw.*, 21(5):733–738, May 2006. doi:10.1016/j.envsoft.2005.08.001.
- [Schmid 2000] Schmid, H. Measurements of CO2 and energy fluxes over a mixed hardwood forest in the mid-western united states. *Agr. Forest Meteorol.*, 103(4):357–374, July 2000. doi:10.1016/s0168-1923(00)00140-4.
- [South et al. 1998] South, Catherine, Susan, C., Grimmond, B., and Wolfe, Charlotte P. Evapotranspiration rates from wetlands with different disturbance histories: Indiana dunes national lakeshore. *Wetlands*, 18(2):216–229, June 1998. doi:10.1007/bf03161657.
- [Sun et al. 2017] Sun, Ting, Wang, Zhi-Hua, Oechel, Walter C., and Grimmond, Sue. The analytical objective hysteresis model (AnOHM v1.0): Methodology to determine bulk storage heat flux coefficients. *Geosci. Model Dev.*, 10(7):2875–2890, July 2017. doi:10.5194/gmd-10-2875-2017.
- [Taesler 1980] Taesler, Roger. Studies of the development and thermal structure of the urban boundary layer in uppsala. Part 1: Experimental program and Part 2: Data analysis and results. Rep. 61. Uppsala, Sweden: Uppsala Universitetet. Uppsala, Sweden: Uppsala Universitetet, 1980. ISBN 221015643.
- [Tang et al. 2021] Tang, Yihao, Sun, Ting, Luo, Zhiwen, Omidvar, Hamidreza, Theeuwes, Natalie, Xie, Xiaoxiong, Xiong, Jie, Yao, Runming, and Grimmond, Sue. Urban meteorological forcing data for building energy simulations. *Building and Environment*, 204:108088, October 2021. doi:10.1016/j.buildenv.2021.108088.
- [Theeuwes et al. 2019] Theeuwes, Natalie E., Ronda, Reinder J., Harman, Ian N., Christen, Andreas, and Grimmond, C. Sue B. Parametrizing horizontally-averaged wind and temperature profiles in the urban roughness sublayer. *Boundary-Layer Meteorol*, 173(3):321–348, September 2019. doi:10.1007/s10546-019-00472-1.
- [Van Ulden and Holtslag 1985] Van Ulden, A. P. and Holtslag, A. A. M. Estimation of atmospheric boundary layer parameters for diffusion applications. *J. Climate Appl. Meteor.*, 24(11):1196–1207, November 1985. doi:10.1175/1520-0450(1985)024<1196:eoablp>2.0.co;2.
- [Voogt and Grimmond 2000] Voogt, J. A. and Grimmond, C. S. B. Modeling surface sensible heat flux using surface radiative temperatures in a simple urban area. *J. Appl. Meteorol.*, 39(10):1679–1699, October 2000. doi:10.1175/1520-0450-39.10.1679.
- [Ward et al. 2016] Ward, H.C., Kotthaus, S., Järvi, L., and Grimmond, C.S.B. Surface urban energy and water balance scheme (SUEWS): Development and evaluation at two UK sites. *Urban Clim.*, 18:1–32, December 2016. doi:10.1016/j.uclim.2016.05.001.
- [Yang et al. 2020] Yang, Bin, He, Yuhao, and Chen, Wei. A simple method for estimation of leaf dry matter content in fresh leaves using leaf scattering albedo. *Global Ecol. Conserv.*, 23:e01201, Sep 2020. doi:10.1016/j.gecco.2020.e01201.
- [Yap 1973] Yap, David Hamilton. Sensible heat fluxes measured in and near Vancouver, B.C. PhD thesis, University of British Columbia, 1973. doi:10.14288/1.0101037.
- [Yoshida et al. 1990] Yoshida, Atsumasa, Tominaga, Kazuhide, and Watatani, Shigeru. Field measurements on energy balance of an urban canyon in the summer season. *Energ. Buildings*, 15(3-4):417–423, January 1990. doi:10.1016/0378-7788(90)90016-c.

INDEX

Symbols	command line option, 261
from	AHMin_WD
suews-convert command line option, 260	command line option, 53
input	AHMin_WE
suews-convert command line option, 260	command line option, 53
output	ahprof_24hr
suews-convert command line option, 260	command line option, 261
path_runcontrol	AHSlope_Cooling_WD
suews-run command line option, 260	command line option, 54
to	AHSlope_Cooling_WE
suews-convert command line option, 260	command line option, 54
-f	AHSlope_Heating_WD
suews-convert command line option, 260	command line option, 53
-i	AHSlope_Heating_WE
suews-convert command line option, 260	command line option, 54
-0	air_ext_lw
suews-convert command line option, 260	command line option, 261
-р	air_ext_sw
suews-run command line option, 260	command line option, 261
-t	air_ssa_lw
suews-convert command line option, 260	command line option, 261
	air_ssa_sw
A	command line option, 261
a1	alb
command line option, 52, 317	command line option, 262
a2	AlbBulk
command line option, 52, 317	command line option, 290
a3	AlbDecTr
command line option, 52, 317	command line option, 291
ActivityProfWD	albDecTr0
command line option, 52	command line option, 156
ActivityProfWE	albdectr_id
command line option, 53	command line option, 262
AddWater	AlbedoMax
command line option, 290	command line option, 54
aerodynamicresistancemethod	AlbedoMin
command line option, 260	command line option, 55
ah_min	AlbEveTr
command line option, 260	command line option, 291
ah_slope_cooling	albEveTr0
command line option, 261	command line option, 156
ah_slope_heating	albevetr_id

command line option, 262 AlbGrass	<pre>command line option, 263 baset_cooling</pre>
command line option, 291 albGrass0	command line option, 264 BaseT_HC
command line option, 156	command line option, 58
albgrass_id	baset_hc
command line option, 262	command line option, 264
albmax_dectr command line option, 262	<pre>baset_heating command line option, 264</pre>
albmax_evetr	BaseTe
command line option, 262	command line option, 58
albmax_grass	basete
command line option, 262	command line option, 264
albmin_dectr	BaseTMethod
command line option, 263	command line option, 25
albmin_evetr	basetmethod
command line option, 263	command line option, 264
albmin_grass	beta
command line option, 263 AlbSnow	command line option,58 beta_bioco2
command line option, 291	command line option, 264
alpha	beta_enh
command line option, 55	command line option, 59
alpha_bioco2	beta_enh_bioco2
command line option, 263	command line option, 264
alpha_enh	BiogenCO2Code
command line option, 59	command line option, 60
alpha_enh_bioco2	bldgh
command line option, 263	command line option, 265
Alt	Bldgs
command line option, 56	command line option,34 BldgsState
command line option, 263	command line option, 157
altitude	BLUEWS, 340
command line option, 317	BSoil
AnOHM_Ch	command line option, 34
command line option, 56	BSoilState
AnOHM_Cp	command line option, 157
command line option, 56	0
AnOHM_Kk	C
command line option, 57	cal_gs_obs() (in module supy.util), 255
AnthropogenicCode	cal_gs_suews() (in module supy.util), 255
command line option, 57 AreaWall	cal_neutral() (in module supy.util), 259
command line option, 57	cal_z0zd() (in module supy.util), 258
Azimuth	calib_g() (in module supy.util), 256
command line option, 291	<pre>capmax_dec command line option, 265</pre>
azimuth	capmin_dec
command line option, 317	command line option, 265
_	CBL, 340
В	CBLday(id)
BaseT	command line option, 166
command line option, 57	CBLUse
baset	command line option, 24

CDD, 340	AHMin_WD, 53
chanohm	AHMin_WE, 53
command line option, 265	ahprof_24hr, 261
CI CONTRACTOR OF THE CONTRACTO	AHSlope_Cooling_WD, 54
command line option, 291	AHSlope_Cooling_WE, 54
CO2_included	AHSlope_Heating_WD, 53
command line option, 166	AHSlope_Heating_WE, 54
CO2PointSource	air_ext_lw, 261
command line option, 61	air_ext_sw, 261
co2pointsource	air_ssa_lw, 261
command line option, 265	air_ssa_sw, 261
Code	alb, 262
command line option, 61	AlbBulk, 290
Code_Bldgs	AlbDecTr, 291
command line option, 63	albDecTr0, 156
Code_BSoil	albdectr_id, 262
command line option, 63	AlbedoMax, 54
Code_DecTr	AlbedoMin, 55
command line option, 63	*
	AlbEveTr, 291
Code_ESTMClass_Bldgs1	albEveTr0, 156
command line option, 64	albevetr_id, 262
Code_ESTMClass_Bldgs2	AlbGrass, 291
command line option, 64	albGrass0, 156
Code_ESTMClass_Bldgs3	albgrass_id, 262
command line option, 64	albmax_dectr, 262
Code_ESTMClass_Bldgs4	albmax_evetr, 262
command line option, 64	albmax_grass, 262
Code_ESTMClass_Bldgs5	albmin_dectr, 263
command line option, 65	albmin_evetr, 263
Code_ESTMClass_Paved1	albmin_grass, 263
command line option, 65	AlbSnow, 291
Code_ESTMClass_Paved2	alpha, 55
command line option, 65	alpha_bioco2, 263
Code_ESTMClass_Paved3	alpha_enh, 59
command line option, 65	alpha_enh_bioco2, 263
Code_EveTr	Alt, 56
command line option, 65	alt, 263
Code_Grass	altitude, 317
command line option, 66	AnOHM_Ch, 56
Code_Paved	AnOHM_Cp, 56
command line option, 66	AnOHM_Kk, 57
	AnthropogenicCode, 57
Code_Water	AreaWall, 57
command line option, 66	*
command line option	Azimuth, 291
a1, 52, 317	azimuth, 317
a2, 52, 317	BaseT, 57
a3, 52, 317	baset, 263
ActivityProfWD, 52	baset_cooling, 264
ActivityProfWE, 53	BaseT_HC, 58
AddWater,290	baset_hc, 264
aerodynamicresistancemethod, 260	baset_heating, 264
ah_min, 260	BaseTe, 58
ah_slope_cooling, 261	basete, 264
ah_slope_heating, 261	BaseTMethod, 25

basetmethod, 264	DayWatPer(2), 69
beta, 58	DayWatPer(3), 69
beta_bioco2, 264	DayWatPer(4),70
beta_enh, 59	DayWatPer(5), 70
beta_enh_bioco2, 264	DayWatPer(6), 70
BiogenCO2Code, 60	DayWatPer $(7), 70$
bldgh, 265	DecidCap, 291
Bldgs, 34	decidCap0, 156
BldgsState, 157	decidcap_id, 266
BSoil, 34	DecTr, 34
BSoilState, 157	dectreeh, 266
capmax_dec, 265	DecTrState, 157
<pre>capmin_dec, 265</pre>	deltaLAI, 317
CBLday(id), 166	DensSnow_Bldgs, 292
CBLUse, 24	DensSnow_BSoil, 291, 292
chanohm, 265	DensSnow_DecTr, 292
CI, 291	DensSnow_EveTr, 293
CO2_included, 166	DensSnow_Grass, 293
CO2PointSource, 61	DensSnow_Paved, 293, 294
co2pointsource, 265	DensSnow_Water, 294
Code, 61	DiagMethod, 29
Code_Bldgs, 63	diagmethod, 266
Code_BSoil, 63	diagnose, 267
Code_DecTr, 63	diagqn, 267
Code_ESTMClass_Bldgs1,64	diagqs, 267
Code_ESTMClass_Bldgs2,64	DiffuseRad, 294
Code_ESTMClass_Bldgs3, 64	DirectRad, 294
Code_ESTMClass_Bldgs4, 64	DisaggMethod, 32
Code_ESTMClass_Bldgs5, 65	DisaggMethodESTM, 33
Code_ESTMClass_Paved1,65	DLHrs, 291
Code_ESTMClass_Paved2,65	Drainage, 294
Code_ESTMClass_Paved3,65	DrainageCoef1,70
Code_EveTr, 65	DrainageCoef2,71
Code_Grass, 66	DrainageEq, 71
Code_Paved, 66	drainrt, 267
Code_Water, 66	EF_umolCO2perJ,72
CondCode, 67	ef_umolco2perj,267
cpanohm, 265	emis, 267
CRWMax, 67	EmissionsMethod, 25
crwmax, 265	emissionsmethod, 267
CRWMin, 67	Emissivity, 73
crwmin, 266	EndDLS, 73
DaysSinceRain, 156	enddls, 268
DaysSR, 291	EnEF_v_Jkm, 73
daywat, 266	enef_v_jkm, 268
DayWat(1), 68	EnergyUseProfWD, 74
DayWat(2), 68	EnergyUseProfWE, 74
DayWat(3), 68	EntrainmentType, 165
DayWat(4), 68	
2u, (1), 00	ESTMCode 74
DavWat(5) 68	ESTMCode, 74 Evan 294
DayWat(5), 68	Evap, 294
DayWat(6), 69	Evap, 294 evapmethod, 268
DayWat(6), 69 DayWat(7), 69	Evap, 294 evapmethod, 268 EveTr, 34
DayWat(6), 69	Evap, 294 evapmethod, 268

7 7111 160	T
evolveTibld, 168	Fraction6of8,78
FAI_Bldgs, 75	Fraction7of8,78
FAI_DecTr, 75	Fraction8of8,79
FAI_EveTr, 75	FrFossilFuel_Heat,82
faibldg, 268	frfossilfuel_heat, 269
faidectree, 268	FrFossilFuel_NonHeat,82
faievetree, 268	frfossilfuel_nonheat, 269
Faut, 76	frMelt_Bldgs, 317
faut, 269	<pre>frMelt_BSoil, 317</pre>
Fc, 294	<pre>frMelt_DecTr, 317</pre>
FcBuild, 294	<pre>frMelt_EveTr, 317</pre>
FcEF_v_Jkm, 76	<pre>frMelt_Grass, 317</pre>
fcef_v_kgkm, 269	<pre>frMelt_Paved, 318</pre>
FcEF_v_kgkmWD, 76	<pre>frMelt_Water, 318</pre>
FcEF_v_kgkmWE, 76	FrPDDwe, 82
Fcld, 295	G1, 82
fcld, 77, 289	g1, 269
FcMetab, 295	G2, 83
FcPhoto, 295	g2, 269
FcPoint, 295	G3, 83
FcRespi, 295	g3, 270
FcTraff, 295	G4 , 83
FileCode, 30	g4, 270
FileInputPath, 30	G5, 83
FileOutputPath, 30	g5, 270
FileSonde(id), 166	G6, 83
FlowCh, 295	g6, 270
FlowChange, 77	gamq_gkgm, 84
flowchange, 269	gamt_Km, 84
Fr_Bldgs, 79	GDD_1_0, 155
fr_Bldgs, 318	GDD_2_0, 155
Fr_Bsoil, 79	GDD_DecTr, 295
Fr_DecTr, 79	GDD_EveTr, 295
fr_DecTr, 318	GDD_Grass, 295
Fr_ESTMClass_Bldgs1, 79	GDDFull, 84
Fr_ESTMClass_Bldgs2, 80	gddfull, 270
Fr_ESTMClass_Bldgs3, 80	GlobalRad, 295
Fr_ESTMClass_Bldgs4, 80	Grass, 34
Fr_ESTMClass_Bldgs5, 80	GrassState, 157
Fr_ESTMClass_Paved1, 80	Grid, 84
Fr_ESTMClass_Paved2, 81	GridConnection1of8, 85
Fr_ESTMClass_Paved3, 81	GridConnection2of8, 86
Fr_EveTr, 81	GridConnection3of8, 86
fr_EveTr, 318	GridConnection4of8, 86
Fr_Grass, 81	GridConnection5of8,87
fr_Grass, 318	GridConnection6of8, 87
Fr_Paved, 81	GridConnection7of8,87
fr_Paved, 318	GridConnection8of8,87
Fr_Water, 82	ground_albedo_dir_mult_fact, 270
Fraction1of8,77	gsModel, 87
	<u> </u>
Fraction2of8,77	gsmodel, 270
Fraction3of8,77	H_Bldgs, 88
Fraction4of8, 78	H_DecTr, 88
Fraction5of8,78	H_EveTr, 88

H_maintain, 88	IrrFr_Grass, 97
h_maintain, 271	IrrFr_Paved, 96
HDD1_h, 296	IrrFr_Water,97
HDD2_c, 296	irrfracbldgs, 272
HDD3_Tmean, 296	irrfracbsoil, 272
HDD4_T5d, 296	irrfracdectr, 272
humactivity_24hr,271	irrfracevetr, 272
10, 296	irrfracgrass, 272
IbldCHmod, 168	irrfracpaved, 272
id, 89, 289	irrfracwater, 273
ie_a, 271	IrrigationCode,97
Ie_a1, 89	isec, 289
Ie_a2, 89	it, 98, 289
Ie_a3, 89	iy, 98, 289
Ie_end, 90	kdiff, 98, 289
ie_end, 271	kdir, 98, 289
ie_m,271	Kdown, 296
Ie_m1, 90	kdown, 99, 289
Ie_m2,90	Kdown2d, 296
Ie_m3,90	KdownZen, 32
Ie_start, 90	Keast, 296
ie_start,271	KeepTstepFilesIn, 31
ih, 91	<pre>KeepTstepFilesOut, 31</pre>
imin, 91, 289	kkanohm, 273
InfiltrationRate, 91	Kmax, 99
InitialData_use, 165	kmax, 273
InitialDataFileName, 166	Knorth, 296
Internal_albedo, 91	Ksouth, 296
Internal_CHbld, 91	Kup, 297
Internal_CHroof, 92	Kup2d, 297
Internal_CHwall,92	kup_BldgsSnow, 318
Internal_emissivity, 92	kup_BSoilSnow, 318
Internal_k1,92	kup_DecTrSnow, 318
Internal_k2,93	kup_EveTrSnow, 318
Internal_k3,93	kup_GrassSnow, 319
Internal_k4,93	kup_PavedSnow, 319
Internal_k5,93	kup_WaterSnow, 319
<pre>Internal_rhoCp1, 93</pre>	Kwest, 297
Internal_rhoCp2,94	L, 34
Internal_rhoCp3,94	LAI, 297
Internal_rhoCp4,94	lai, 99, 290
Internal_rhoCp5,94	LAI_DecTr, 297
Internal_thick1,94	LAI_EveTr, 297
Internal_thick2,95	LAI_Grass, 297
Internal_thick3,95	lai_id, 273
Internal_thick4,95	laicalcyes, 273
Internal_thick5,95	LAIEq, 99
InternalWaterUse, 95	LAIinitialDecTr, 155
internalwateruse_h, 272	LAIinitialEveTr, 155
Irr, 296	LAIinitialGrass, 155
IrrFr_Bldgs, 96	LAIlumps, 297
IrrFr_BSoil, 97	LAIMax, 100
IrrFr_DecTr, 96	laimax, 273
IrrFr_EveTr, 96	LAIMin, 100
, ~ ~	,

laimin, 273	MwStore_DecTr, 299
laipower, 274	MwStore_EveTr, 299
laitype, 274	MwStore_Grass, 299
lat, 100, 274	MwStore_Paved, 299
LBC_soil, 168	MwStore_Water, 299
Ldown, 297	n_stream_lw_urban,275
ldown, 101, 290	n_stream_sw_urban,275
Ldown2d, 297	n_vegetation_region_urban, 275
LeafGrowthPower1, 101	narp_emis_snow, 275
LeafGrowthPower2, 101	NARP_Trans, 105
LeafOffPower1, 102	narp_trans_site,276
LeafOffPower2, 102	NetRadiationMethod, 24
Least, 298	netradiationmethod, 276
LeavesOutInitially, 155	nroom, 105
lng, 102, 274	NWtrState, 300
Lnorth, 298	0, 34
Lob, 298	OBS_SMCap, 105
Lsouth, 298	OBS_SMDepth, 106
LUMPS_Cover, 103	OBS_SoilNotRocks, 106
LUMPS_DrRate, 103	ohm_coef, 276
LUMPS_MaxRes, 103	ohm_threshsw, 276
Lup, 298	ohm_threshwd, 276
Lup2d, 298	OHMCode_SummerDry, 106
Lwest, 298	OHMCode_SummerWet, 107
MaxConductance, 104	OHMCode_WinterDry, 108
maxconductance, 274	OHMCode_WinterWet, 109
MaxFCMetab, 104	OHMIncQF, 26
maxfcmetab, 274	ohmincqf, 276
MaxQFMetab, 104	OHMThresh_SW, 109
maxqfmetab, 274	OHMThresh_WD, 110
MD, 34	P_day, 300
MeltWater, 298	Paved, 34
MeltWStore, 298	PavedState, 157
min_res_bioco2, 275	PipeCapacity, 111
min_respi, 60	pipecapacity, 277
MinFCMetab, 105	PopDensDay, 111
minfcmetab, 275	popdensdaytime, 277
MinQFMetab, 104	PopDensNight, 111
mingfmetab, 275	popdensnighttime, 277
MU, 34	popprof_24hr, 277
MultipleESTMFiles, 31	PopProfWD, 112
MultipleInitFiles, 30	PopProfWE, 112
MultipleMetFiles, 30	pormax_dec, 277
MultRainAmongN, 33	pormin_dec, 277
MultRainAmongNUpperI, 33	-
Mw_Bldgs, 299	Porosity, 300
	porosity id 278
Mw_BSoil, 299	porosity_id, 278 PorosityMax, 112
Mw_DecTr, 299	
Mw_EveTr, 299	PorosityMin, 112
Mw_Grass, 299	PrecipLimAlb, 113
Mw_Paved, 300	preciplimit, 278
Mw_Water, 300	preciplimitalb, 278
MwStore_Bldgs, 299	PrecipLimSnow, 113
MwStore_BSoil, 298	pres, 113, 290

	5 250
q+_gkg, 115	qf_c, 278
Q2, 300	QF_C_WD, 115
q_1 , 319	QF_C_WE, 115
q_10 , 319	QH, 300
q_11, 319	qh , 116, 290
q_12, 319	QH_Choice, 165
q_13, 319	QHlumps, 300
q_14, 319	QHresis, 301
q_15, 319	QM, 301
q_16, 319	Qm_Bldgs, 303
q_17, 320	Qm_BSoil, 303
q_18, 320	Qm_DecTr, 303
q_19, 320 q_19, 320	Qm_EveTr, 303
q_2, 320	Qm_Grass, 303
q_20, 320	Qm_Paved, 303
q_21, 320	Qm_Water, 303
q_22, 320	QmFr_Bldgs, 302
q_23, 320	QmFr_BSoil, 302
q_24 , 320	QmFr_DecTr, 302
q_25, 320	QmFr_EveTr, 302
q_26, 320	QmFr_Grass, 302
q_27 , 321	QmFr_Paved, 302
q_28 , 321	QmFr_Water, 302
q_29, 321	QMFreeze, 301
q_3, 321	QMRain, 301
q_30, 321	QN, 301
q_4, 321	qn, 116, 290
q_5, 321	QNSnow, 301
q_6, 321	QNSnowFr, 301
q_5, 321 q_7, 321	QS, 301
q_8, 321	qs, 116, 290
q_9, 321	RA, 303
q_gkg, 115	radmeltfact, 279
Qa_Bldgs, 301	RadMeltFactor, 116
Qa_BSoil, 301	Rain, 304
Qa_DecTr, 301	rain, 116, 290
Qa_EveTr, 302	RainAmongN, 33
Qa_Grass, 302	raincover, 279
Qa_Paved, 302	RainDisaggMethod, 33
Qa_Water,302	rainmaxres, 279
QE, 300	RainSn_Bldgs, 304
qe, 113, 290	RainSn_BSoil, 304
QElumps, 300	RainSn_DecTr, 304
QF, 300	RainSn_EveTr, 305
qf, 113, 290	RainSn_Grass, 305
q f0_beu , 278	
· · · · · · · · · · · · · · · · · · ·	RainSn Paved 305
OFO BEU WD. 60	RainSn_Paved, 305
QF0_BEU_WD, 60 OF0_BEIL_WF_61	RainSn_Water, 305
QF0_BEU_WE, 61	RainSn_Water, 305 ResolutionFilesIn, 29
QF0_BEU_WE, 61 qf_a, 278	RainSn_Water, 305 ResolutionFilesIn, 29 ResolutionFilesInESTM, 29
QF0_BEU_WE, 61 qf_a, 278 QF_A_WD, 114	RainSn_Water, 305 ResolutionFilesIn, 29 ResolutionFilesInESTM, 29 ResolutionFilesOut, 30
QF0_BEU_WE, 61 qf_a, 278 QF_A_WD, 114 QF_A_WE, 114	RainSn_Water, 305 ResolutionFilesIn, 29 ResolutionFilesInESTM, 29 ResolutionFilesOut, 30 resp_a, 59, 279
QF0_BEU_WE, 61 qf_a, 278 QF_A_WD, 114 QF_A_WE, 114 qf_b, 278	RainSn_Water, 305 ResolutionFilesIn, 29 ResolutionFilesInESTM, 29 ResolutionFilesOut, 30 resp_a, 59, 279 resp_b, 60, 279
QF0_BEU_WE, 61 qf_a, 278 QF_A_WD, 114 QF_A_WE, 114	RainSn_Water, 305 ResolutionFilesIn, 29 ResolutionFilesInESTM, 29 ResolutionFilesOut, 30 resp_a, 59, 279

PO 202	0 0 0 0 0 161
RO, 303	SnowDensDecTr, 161
ROImp, 304	SnowDensEveTr, 161
ROPipe, 304	SnowDensGrass, 161
ROSoil, 304	SnowDensMax, 120
RoughLenHeatMethod, 27	snowdensmax, 281
roughlenheatmethod, 279	SnowDensMin, 120
RoughLenMomMethod, 27	snowdensmin, 281
roughlenmommethod, 279	SnowDensPaved, 160
ROVeg, 304	SnowDensWater, 161
ROWater, 304	snowfrac, 282
RS, 304	SnowFracBldgs, 160
Runoff, 34	SnowFracBSoil, 160
RunoffToWater, 117	SnowFracDecTr, 160
runofftowater, 280	SnowFracEveTr, 160
S1, 117	SnowFracGrass, 160
s1, 280	SnowFracPaved, 159
S2, 117	SnowFracWater, 160
s2, 280	SnowInitially, 158
SatHydraulicCond, 118	snowlimbldg, 282
sathydraulicconduct, 280	SnowLimPatch, 120
Sd_Bldgs, 307	snowlimpaved, 282
Sd_BSoil, 307	SnowLimRemove, 121
Sd_DecTr, 307	snowpack, 282
Sd_EveTr, 307	SnowPackBldgs, 159
Sd_Grass, 307	SnowPackBSoil, 159
Sd_Paved, 307	SnowPackDecTr, 159
Sd_Water, 307	SnowPackEveTr, 159
SDD_DecTr, 305	SnowPackGrass, 159
SDD_EveTr, 305	snowpacklimit, 282
SDD_Grass, 305	SnowPackPaved, 159
SDDFull, 118	SnowPackWater, 159
sddfull, 280	snowprof_24hr, 282
sfr_surf, 280	SnowRBldgs, 307
SMD, 305	SnowRPaved, 307
SMDBldgs, 305	SnowUse, 24
SMDBSoil, 305	snowuse, 282
SMDDecTr, 305	snowwater, 283
SMDEveTr, 306	SnowWaterBldgsState, 158
SMDGrass, 306	SnowWaterBSoilState, 158
SMDMethod, 28	SnowWaterDecTrState, 158
smdmethod, 280	SnowWaterEveTrState, 158
SMDPaved, 306	SnowWaterGrassState, 158
snow, 118, 290	SnowWaterPavedState, 158
snowalb, 281	SnowWaterWaterState, 158
SnowAlb0, 161	SoilDensity, 121
snowalbmax, 281	SoilDepth, 121
snowalbmin, 281	soildepth, 283
SnowCh, 307	SoilStore, 35
	soilstore_surf, 283
SnowClearingProfWD, 118	
SnowClearingProfWE, 119	SoilstoreBldgsState, 154
SnowCode, 119	SoilstoreBSoilState, 154
snowdens, 281	SoilStoreCap, 122
SnowDensBldgs, 160	soilstorecap_surf, 283
SnowDensBSoil, 161	SoilstoreDecTrState, 154

SoilstoreEveTrState, 154	T2, 308
SoilstoreGrassState, 154	T_1, 308
SoilstorePavedState, 154	T_10, 308
SoilTypeCode, 122	T_11, 309
SOLWEIGUse, 28	T_12, 309
Sondeflag, 165	T_13, 309
StabilityMethod, 26	T_14, 309
stabilitymethod, 283	T_15, 309
StartDLS, 122	T_16, 309
startdls, 283	T_17, 309
	T_18, 309
State, 308	
state_surf, 284	T_19, 309
StateLimit, 123	T_2, 309
statelimit_surf, 284	T_20, 309
StBldgs, 308	T_21, 310
StBSoil, 307	T_22, 310
StDecTr, 308	T_23, 310
StEveTr, 308	T_24, 310
StGrass, 308	T_25, 310
StorageHeatMethod, 26	T_26, 310
storageheatmethod, 284	T_27, 310
StorageMax, 123	T_28, 310
StorageMin, 124	T_29, 310
storedrainprm, 284	T_3, 310
StPaved, 308	T_30, 310
StWater, 308	T_4, 311
SuppressWarnings, 32	T_5, 311
Surf_k1, 125	T_6, 311
Surf_k2, 126	T_7, 311
Surf_k3, 126	T_8, 311
Surf_k4, 126	T_9, 311
Surf_k5, 126	Ta, 311
Surf_rhoCp1, 126	Tair, 129, 289
Surf_rhoCp2, 127	tau_a, 129, 285
Surf_rhoCp3, 127	tau_f, 129, 285
Surf_rhoCp4, 127	tau_r, 129, 285
Surf_rhoCp5, 127	TCritic_Cooling_WD, 130
Surf_thick1, 127	TCritic_Cooling_WE, 130
Surf_thick2, 128	TCritic_Heating_WD, 129
Surf_thick3, 128	TCritic_Heating_WE, 130
Surf_thick4, 128	Temp_C0, 156
Surf_thick5, 128	tempmeltfact, 285
SurfaceArea, 125	TempMeltFactor, 130
surfacearea, 284	Tg, 311
•	
SurfCh, 308	TH, 130
sw_dn_direct_frac, 284	th, 285
SWE, 306	Theat_fix, 168
SWE_Bldgs, 306	Theat_off, 169
SWE_BSoil, 306	Theat_on, 169
SWE_DecTr, 306	theta, 59
SWE_EveTr, 306	Theta+_K, 131
SWE_Grass, 306	theta_bioco2, 285
SWE_Paved, 306	Theta_K, 131
SWE_Water, 306	Tiair, 131

T:	II 17 212
Timezone, 131	U_17, 313
timezone, 285	U_18, 313
TL, 131	U_19, 313
tl, 286	U_2, 314
Tmax, 311	U_20, 314
Tmin, 311	U_21, 314
Tmrt, 311	U_22, 314
ToBldgs, 132	U_23, 314
ToBSoil, 132	U_24, 314
ToDecTr, 132	U_25, 314
ToEveTr, 132	U_26, 314
ToGrass, 132	U_27, 314
ToPaved, 133	U_28, 314
ToRunoff, 133	U_29, 314
ToSoilStore, 133	U_3, 315
TotCh, 312	U_30, 315
ToWater, 133	U_4, 315
trafficrate, 286	U_5, 315
TrafficRate_WD, 134	U_6, 315
TrafficRate_WE, 134	U_7, 315
TrafficUnits, 134	U_8, 315
trafficunits, 286	U_9, 315
traffprof_24hr, 286	use_sw_direct_albedo,286
TraffProfWD, 133	<pre>veg_contact_fraction_const, 287</pre>
TraffProfWE, 134	veg_fsd_const, 287
Troad, 135	veg_ssa_lw, 287
Troof, 135	veg_ssa_sw, 287
Ts, 312	veg_type, 287
Tsnow_Bldgs, 312	Wall_k1, 137
Tsnow_BSoil, 312	Wall_k2, 137
Tsnow_DecTr, 312	Wall_k3, 137
Tsnow_EveTr, 312	Wall_k4, 137
Tsnow_Grass, 312	Wall_k5, 137
Tsnow_Paved, 312	Wall_rhoCp1, 138
Tsnow_Water, 312	Wall_rhoCp2, 138
Tstep, 29	Wall_rhoCp3, 138
tstep, 286	Wall_rhoCp4, 138 Wall_rhoCp5, 138
Tsurf(hairs 168	- · · · · · · · · · · · · · · · · · · ·
TsurfChoice, 168	Wall_thick1, 139
Twall, 135	Wall_thick2, 139
Twall_e, 135	Wall_thick3, 139
Twall_n, 136	Wall_thick4, 139
Twall_s, 136	Wall_thick5, 139
Twall_w, 136	Water, 34
U, 136, 289	WaterDepth, 140
U10, 312	waterdist, 287
U_1, 313	WaterState, 157
U_10, 313	WaterUseMethod, 28
U_11, 313	waterusemethod, 287
U_12, 313	WaterUseProfAutoWD, 140
U_13, 313	WaterUseProfAutoWE, 140
U_14, 313	WaterUseProfManuWD, 141
U_15, 313	WaterUseProfManuWE, 141
U_16, 313	wdir, 141, 290

wetthresh_surf, 288	z_29, 324
WetThreshold, 141	z_3 , 324
WithinGridBldgsCode, 142	z_30 , 324
WithinGridBSoilCode, 143	z_4 , 324
WithinGridDecTrCode, 143	z_5 , 324
WithinGridEveTrCode, 143	z_6 , 324
WithinGridGrassCode, 144	z_7 , 324
WithinGridPavedCode, 144	z_8 , 324
WithinGridWaterCode, 144	z_9 , 324
WriteOutOption, 31	zd , 146
Wsb, 166	zdm , 324
WU_DecTr1, 316	zdm_in, 288
WU_DecTr2, 316	Zenith, 316
WU_DecTr3, 316	zi0 , 147
WU_EveTr1, 316	CondCode
WU_EveTr2, 316	command line option, 67
WU_EveTr3, 316	cpanohm
WU_Grass1, 316	command line option, 265
WU_Grass2, 316	CRWMax
WU_Grass3, 316	command line option, 67
WUDecTr, 315	crwmax
WUEveTr, 315	command line option, 265
WUGrass, 315	CRWMin
Wuh, 145, 289	command line option, 67
WUInt, 316	crwmin
wuprofa_24hr,288	command line option, 266
wuprofm_24hr, 288	Б
xsmd, 145, 290	D
Year, 145	DaysSinceRain
z, 146, 288	command line option, 156
z0 , 146	DaysSR
z0m , 322	command line option, 291
z0m_in, 288	daywat
z_1, 322	command line option, 266
z_10, 322	DayWat(1)
z_11, 322	command line option, 68
z_12, 322	DayWat(2)
z_13, 322	command line option, 68
z_14, 322	DayWat(3)
z_15, 322	command line option, 68
z_16, 322	DayWat(4)
z_17, 322	command line option, 68
z_18, 322	DayWat(5)
z_19, 323	command line option, 68
z_2, 323	DayWat(6)
z_20, 323	command line option, 69
z_21, 323	DayWat(7)
z_22, 323	command line option, 69
z_23, 323	daywatper
z_24, 323	command line option, 266
z_25, 323	<pre>DayWatPer(1)</pre>
z_26, 323	command line option, 69
z_27, 323	<pre>DayWatPer(2)</pre>
z_28, 323	command line option, 69

DayWatPer(3)	DisaggMethod
command line option, 69	command line option, 32
DayWatPer(4)	DisaggMethodESTM
command line option, 70	command line option, 33
DayWatPer(5)	DLHrs
command line option, 70	command line option, 291
DayWatPer(6)	download_era5() (in module supy.util), 251
command line option, 70	Drainage
DayWatPer(7)	command line option, 294
command line option, 70	DrainageCoef1
DecidCap	command line option, 70
command line option, 291	DrainageCoef2
decidCap0	command line option, 71
command line option, 156	DrainageEq
decidcap_id	command line option, 71
command line option, 266	drainrt
DecTr	command line option, 267
command line option, 34	DSM, 340
dectreeh	DTM, 340
command line option, 266	211,010
DecTrState	E
command line option, 157	EF_umolCO2perJ
deltaLAI	command line option, 72
command line option, 317	ef_umolco2perj
DEM, 340	
DensSnow_Bldgs	command line option, 267
command line option, 292	emis
DensSnow_BSoil	command line option, 267
command line option, 291, 292	EmissionsMethod
DensSnow_DecTr	command line option, 25
command line option, 292	emissionsmethod
DensSnow_EveTr	command line option, 267
command line option, 293	Emissivity
DensSnow_Grass	command line option, 73
command line option, 293	EndDLS
DensSnow_Paved	command line option, 73
command line option, 293, 294	enddls
DensSnow_Water	command line option, 268
command line option, 294	EnEF_v_Jkm
derive_ohm_coef() (in module supy.util), 254	command line option, 73
DiagMethod	enef_v_jkm
command line option, 29	command line option, 268
diagmethod	EnergyUseProfWD
	command line option, 74
command line option, 266	EnergyUseProfWE
diagnose	command line option, 74
command line option, 267	EntrainmentType
diagqn	command line option, 165
command line option, 267	ESTM, 340
diagqs	ESTMCode
command line option, 267	command line option, 74
DiffuseRad	Evap
command line option, 294	command line option, 294
DirectRad	evapmethod
command line option, 294	command line option, 268

EveTr	FileCode
command line option, 34	command line option, 30
evetreeh	FileInputPath
command line option, 268	command line option, 30
EveTrState	FileOutputPath
command line option, 157	command line option, 30
evolveTibld	FileSonde(id)
command line option, 168	command line option, 166
extract_reclassification() (in module supy.util), 256	<pre>fill_gap_all() (in module supy.util), 25 FlowCh</pre>
F	command line option, 295 FlowChange
FAI_Bldgs	command line option,77
command line option, 75	flowchange
FAI_DecTr	command line option, 269
command line option, 75	Fr_Bldgs
FAI_EveTr	command line option, 79
command line option, 75	fr_Bldgs
faibldg	command line option, 318
command line option, 268	Fr_Bsoil
faidectree	command line option, 79
command line option, 268	Fr_DecTr
faievetree	command line option, 79
command line option, 268	fr_DecTr
Faut	command line option, 318
command line option, 76	Fr_ESTMClass_Bldgs1
faut	command line option, 79
command line option, 269	Fr_ESTMClass_Bldgs2
Fc	command line option, 80
command line option, 294	Fr_ESTMClass_Bldgs3
FcBuild	command line option, 80
command line option, 294	Fr_ESTMClass_Bldgs4
FcEF_v_Jkm	command line option, 80
command line option, 76	Fr_ESTMClass_Bldgs5
fcef_v_kgkm	command line option, 80
command line option, 269	Fr_ESTMClass_Paved1
FcEF_v_kgkmWD	command line option, 80
command line option, 76	Fr_ESTMClass_Paved2
FcEF_v_kgkmWE	command line option, 81
command line option, 76	Fr_ESTMClass_Paved3
Fcld	command line option, 81
command line option, 295	Fr_EveTr
fcld	command line option, 81
command line option, 77, 289	fr_EveTr
FcMetab	command line option, 318
command line option, 295	Fr_Grass
FcPhoto	command line option, 81
command line option, 295	fr_Grass
FcPoint	command line option, 318
command line option, 295	Fr_Paved
FcRespi	command line option, 81
command line option, 295	fr_Paved
FcTraff	command line option, 318
command line option, 295	Fr_Water

command line option, 82 Fraction1of8	command line option, 270
command line option, 77	command line option, 83
Fraction2of8	
	command line option, 270
command line option, 77	- · · · · · · · · · · · · · · · · · · ·
Fraction3of8	G5
command line option, 77	command line option, 83
Fraction4of8	g5
command line option, 78	command line option, 270
Fraction5of8	G6
command line option, 78	command line option, 83
Fraction6of8	g6
command line option, 78	command line option, 270
Fraction7of8	gamq_gkgm
command line option, 78	command line option, 84
Fraction8of8	gamt_Km
command line option, 79	command line option, 84
FrFossilFuel_Heat	GDD, 340
command line option, 82	GDD_1_0
<pre>frfossilfuel_heat</pre>	command line option, 155
command line option, 269	GDD_2_0
FrFossilFuel_NonHeat	command line option, 155
command line option, 82	GDD_DecTr
<pre>frfossilfuel_nonheat</pre>	command line option, 295
command line option, 269	GDD_EveTr
frMelt_Bldgs	command line option, 295
command line option, 317	GDD_Grass
frMelt_BSoil	command line option, 295
command line option, 317	GDDFull
frMelt_DecTr	command line option, 84
command line option, 317	gddfull
frMelt_EveTr	command line option, 270
command line option, 317	gen_epw() (in module supy.util), 253
frMelt Grass	gen_forcing_era5() (in module supy.util), 252
command line option, 317	GlobalRad
frMelt_Paved	command line option, 295
command line option, 318	Grass
frMelt_Water	command line option, 34
command line option, 318	GrassState
FrPDDwe	command line option, 157
command line option, 82	Grid
Command Time option, 82	
G	command line option, 84 GridConnection1of8
G1	command line option, 85
command line option, 82	GridConnection2of8
g1	command line option, 86
command line option, 269	GridConnection3of8
G2	command line option, 86
command line option, 83	GridConnection4of8
g2	command line option, 86
command line option, 269	GridConnection5of8
G3	command line option,87
command line option, 83	GridConnection6of8 command line option, 87

GridConnection7of8	command line option, 271
command line option, 87	Ie_m1
GridConnection8of8	command line option, 90
command line option, 87	Ie_m2
ground_albedo_dir_mult_fact	command line option, 90
command line option, 270	Ie_m3
gsModel	command line option, 90
command line option, 87	Ie_start
gsmodel	command line option, 90
command line option, 270	ie_start
1.1	command line option, 271
Н	ih
H_Bldgs	command line option, 91
command line option, 88	imin
H_DecTr	command line option, 91, 289
command line option, 88	InfiltrationRate
H_EveTr	command line option, 91
command line option, 88	<pre>init_supy() (in module supy), 248</pre>
H_maintain	InitialData_use
command line option, 88	command line option, 165
h_maintain	InitialDataFileName
command line option, 271	command line option, 166
HDD, 340	<pre>Internal_albedo</pre>
HDD1_h	command line option, 91
command line option, 296	<pre>Internal_CHbld</pre>
HDD2_c	command line option, 91
command line option, 296	<pre>Internal_CHroof</pre>
HDD3_Tmean	command line option, 92
command line option, 296	<pre>Internal_CHwall</pre>
HDD4_T5d	command line option, 92
command line option, 296	Internal_emissivity
humactivity_24hr	command line option, 92
command line option, 271	<pre>Internal_k1</pre>
-	command line option, 92
	<pre>Internal_k2</pre>
10	command line option, 93
command line option, 296	<pre>Internal_k3</pre>
IbldCHmod	command line option, 93
command line option, 168	<pre>Internal_k4</pre>
id	command line option, 93
command line option, 89, 289	<pre>Internal_k5</pre>
ie_a	command line option, 93
command line option, 271	<pre>Internal_rhoCp1</pre>
Ie_a1	command line option, 93
command line option, 89	<pre>Internal_rhoCp2</pre>
Ie_a2	command line option, 94
command line option, 89	<pre>Internal_rhoCp3</pre>
Ie_a3	command line option, 94
command line option, 89	<pre>Internal_rhoCp4</pre>
Ie_end	command line option, 94
command line option, 90	<pre>Internal_rhoCp5</pre>
ie_end	command line option, 94
command line option, 271	<pre>Internal_thick1</pre>
ie_m	command line option, 94

<pre>Internal_thick2</pre>	kdir
command line option, 95	command line option, 98, 289
<pre>Internal_thick3</pre>	Kdown
command line option, 95	command line option, 296
Internal_thick4	kdown
command line option, 95	command line option, 99, 289
Internal_thick5	Kdown2d
command line option, 95	command line option, 296
InternalWaterUse	KdownZen
command line option, 95	command line option, 32
internalwateruse_h	Keast
command line option, 272	command line option, 296
Irr	KeepTstepFilesIn
command line option, 296	command line option, 31
IrrFr_Bldgs	KeepTstepFilesOut
command line option, 96	command line option, 31
IrrFr_BSoil	kkanohm
command line option, 97	
IrrFr_DecTr	command line option, 273 Kmax
command line option, 96	command line option, 99
IrrFr_EveTr	kmax
command line option, 96	command line option, 273
IrrFr_Grass	Knorth
command line option, 97	command line option, 296
IrrFr_Paved	Ksouth
command line option, 96	command line option, 296
IrrFr_Water	Kup
command line option, 97	command line option, 297
irrfracbldgs	Kup2d
command line option, 272	command line option, 297
irrfracbsoil	kup_BldgsSnow
command line option, 272	command line option, 318
irrfracdectr	kup_BSoilSnow
command line option, 272	command line option, 318
irrfracevetr	kup_DecTrSnow
command line option, 272	command line option, 318
irrfracgrass	kup_EveTrSnow
command line option, 272	command line option, 318
irrfracpaved	kup_GrassSnow
command line option, 272	command line option, 319
irrfracwater	kup_PavedSnow
command line option, 273	command line option, 319
IrrigationCode	kup_WaterSnow
command line option, 97	command line option, 319
isec	Kwest
command line option, 289	command line option, 297
	Command Time option, 297
it	L
command line option, 98, 289	_
iy	L
command line option, 98, 289	command line option, 34
K	LAI, 340
	command line option, 297
kdiff	lai
command line option, 98, 289	command line option, 99, 290

LAI_DecTr	lng
command line option, 297	command line option, 102, 274
LAI_EveTr	Lnorth
command line option, 297	command line option, 298
LAI_Grass	<pre>load_forcing_grid() (in module supy), 249</pre>
command line option, 297	load_SampleData() (in module supy), 251
lai_id	Lob
command line option, 273	command line option, 298
laicalcyes	Lsouth
command line option, 273	command line option, 298
LAIEq	LUMPS, 340
command line option, 99	LUMPS_Cover
- · · · · ·	
LAIinitialDecTr	command line option, 103
command line option, 155	LUMPS_DrRate
LAIinitialEveTr	command line option, 103
command line option, 155	LUMPS_MaxRes
LAIinitialGrass	command line option, 103
command line option, 155	Lup
LAIlumps	command line option, 298
command line option, 297	Lup2d
LAIMax	command line option, 298
command line option, 100	Lwest
laimax	command line option, 298
command line option, 273	L↓, 340
LAIMin	
command line option, 100	M
laimin	MaxConductance
command line option, 273	command line option, 104
laipower	maxconductance
command line option, 274	
laitype	command line option, 274
command line option, 274	MaxFCMetab
lat	command line option, 104
	maxfcmetab
command line option, 100, 274	command line option, 274
LBC_soil	MaxQFMetab
command line option, 168	command line option, 104
Ldown	maxqfmetab
command line option, 297	command line option, 274
ldown	MD
command line option, 101, 290	command line option, 34
Ldown2d	MeltWater
command line option, 297	command line option, 298
LeafGrowthPower1	MeltWStore
command line option, 101	command line option, 298
LeafGrowthPower2	min_res_bioco2
command line option, 101	command line option, 275
LeafOffPower1	min_respi
command line option, 102	command line option, 60
LeafOffPower2	MinFCMetab
command line option, 102	
Least	command line option, 105
command line option, 298	minfcmetab
LeavesOutInitially	command line option, 275
· · · · · · · · · · · · · · · · · · ·	MinQFMetab
command line option, 155	command line option, 104

minqfmetab	command line option, 105
command line option, 275	narp_trans_site
MU	command line option, 276
command line option, 34	NetRadiationMethod
MultipleESTMFiles	command line option, 24
command line option, 31	netradiationmethod
MultipleInitFiles	command line option, 276
command line option, 30	nroom
MultipleMetFiles	command line option, 105
command line option, 30	NWtrState
MultRainAmongN	command line option, 300
command line option, 33	_
MultRainAmongNUpperI	0
command line option, 33	0
Mw_Bldgs	command line option, 34
command line option, 299	OBS_SMCap
Mw_BSoil	command line option, 105
command line option, 299	OBS_SMDepth
Mw_DecTr	command line option, 106
command line option, 299	OBS_SoilNotRocks
Mw_EveTr	command line option, 106
command line option, 299	OHM, 340
Mw_Grass	ohm_coef
command line option, 299	command line option, 276
Mw_Paved	ohm_threshsw
command line option, 300	command line option, 276
Mw_Water	ohm_threshwd
command line option, 300	command line option, 276
MwStore_Bldgs	OHMCode_SummerDry
command line option, 299	command line option, 106
MwStore_BSoil	OHMCode_SummerWet
command line option, 298	command line option, 107
MwStore_DecTr	OHMCode_WinterDry
command line option, 299	command line option, 108
MwStore_EveTr	OHMCode_WinterWet
command line option, 299	command line option, 109
MwStore_Grass	OHMIncQF
command line option, 299	command line option, 26
MwStore_Paved	ohmincqf
command line option, 299	command line option, 276
MwStore_Water	OHMThresh_SW
command line option, 299	command line option, 109
N I	OHMThresh_WD
N	command line option, 110
n_stream_lw_urban	n
command line option, 275	P
n_stream_sw_urban	P_day
command line option, 275	command line option, 300
n_vegetation_region_urban	Paved
command line option, 275	command line option, 34
NARP, 340	PavedState
narp_emis_snow	command line option, 157
command line option, 275	PipeCapacity
NARP_Trans	command line option, 111

pipecapacity	q_11		
command line option, 277	command	line	option, 319
plot_comp() (in module supy.util), 257	q_12		
plot_day_clm() (in module supy.util), 258	command	line	option, 319
plot_reclassification() (in module supy.util), 257	q_13		
plot_rsl() (in module supy.util), 258	command	line	option, 319
PopDensDay	q_14		
command line option, 111	command	line	option, 319
popdensdaytime	q_15		
command line option, 277	command	line	option, 319
PopDensNight	q_16		
command line option, 111	command	line	option, 319
popdensnighttime	q_17		
command line option, 277	command	line	option, 320
popprof_24hr	q_18		
command line option, 277	command	line	option, 320
PopProfWD	q_19		
command line option, 112	command	line	option, 320
PopProfWE	q_2		
command line option, 112		line	option, 320
pormax_dec	q_20		-
command line option, 277		line	option, 320
pormin_dec	q_21		•
command line option, 277	_	line	option, 320
Porosity	q_22		• ′
command line option, 300		line	option, 320
porosity0	q_23		op 22011, 22
command line option, 156	-	line	option, 320
porosity_id	q_24		· P,
command line option, 278	-	line	option, 320
PorosityMax	q_25		op 22011, 82
command line option, 112	-	line	option, 320
PorosityMin	q_26		operon, sz.
command line option, 112	_	line	option, 320
PrecipLimAlb	q_27	11110	operon, 32
command line option, 113	•	line	option, 32
preciplimit	q_28	11110	operon, 32
command line option, 278		line	option, 32
preciplimitalb	q_29	11116	opcion, 32
command line option, 278	_	lino	option, 32
PrecipLimSnow	q_3	11116	opcion, 32
command line option, 113		lino	option, 32
	q_30	11116	option, 32
pres command line option, 113, 290		lino	option, 32
Command Time option, 113, 290		11116	option, 32
Q	q_4	1:00	ontion 22
		Tine	option, 32
q+_gkg	q_5	1	22
command line option, 115		line	option, 32
Q2	q_6	12	
command line option, 300		ııne	option, 32
$q_{-}1$	q_7	12	
command line option, 319		ııne	option, 32
q_10	q_8	1.5	
command line option, 319	command	line	option, 32

q_9				qh		
command	line	option, 3	321	command	line	option, 116, 290
q_gkg				QH_Choice		
command	line	option,	115	command	line	option, 165
Qa_Bldgs				QHlumps		
command	line	option, 3	301	command	line	option, 300
Qa_BSoil		-		QHresis		-
	line	option, 3	301		line	option, 301
Qa_DecTr		• /		QM		• /
	line	option,	301	•	line	option, 301
Qa_EveTr		,		Qm_Bldgs		,
	line	option, 3	302		line	option, 303
Qa_Grass		op 02011, 0		Qm_BSoil		op 22011, 200
	line	option,	302		line	option, 303
Qa_Paved	11110	option, .	302	Qm_DecTr	11116	operon, 303
	lino	ontion 3	202		lino	ontion 202
	Tine	option,	502		TIME	option, 303
Qa_Water	1		202	Qm_EveTr	1.2	202
	line	option,	302		line	option, 303
QE, 340			200	Qm_Grass		
command	line	option, 3	300		line	option, 303
qe				Qm_Paved		
command	line	option,	113, 290	command	line	option, 303
QElumps				Qm_Water		
command	line	option, 3	300	command	line	option, 303
QF, 340				${\tt QmFr_Bldgs}$		
command	line	option, 3	300	command	line	option, 302
qf				QmFr_BSoil		
command	line	option,	113, 290	command	line	option, 302
qf0_beu				QmFr_DecTr		
-	line	option, 2	278		line	option, 302
QF0_BEU_WD		• /		QmFr_EveTr		• /
	line	option,	50		line	option, 302
QF0_BEU_WE		op 02-011,		QmFr_Grass		op 2231, 232
	line	option,	51		line	option, 302
qf_a	11110	op cron, (51	QmFr_Paved	11110	operon, 302
-	line	option,	278		line	option, 302
QF_A_WD	11110	option, 2	270	QmFr_Water	11116	operon, 302
	lino	ontion	114		lino	ontion 202
command	TIRE	option,	114		TIRE	option, 302
QF_A_WE	12	1	114	QMFreeze	1	201
	line	option,	114		line	option, 301
qf_b			270	QMRain ,		201
	line	option,	278		line	option, 301
QF_B_WD				QN		
	line	option,	114	command	line	option, 301
QF_B_WE				qn		
command	line	option,	114	command	line	option, 116, 290
qf_c				QNSnow		
command	line	option,	278	command	line	option, 301
QF_C_WD				QNSnowFr		
command	line	option,	115	command	line	option, 301
QF_C_WE				QS		
	line	option,	115		line	option, 301
QH, 340		= ′		qs		
	line	option, 3	300	-	line	option, 116, 290
		- '				

Qstar, 340	ROPipe
П	command line option, 304
R	ROSoil
RA	command line option, 304
command line option, 303	RoughLenHeatMethod
radmeltfact	command line option, 27
command line option, 279	roughlenheatmethod
RadMeltFactor	command line option, 279
command line option, 116	RoughLenMomMethod
Rain	command line option, 27
command line option, 304	roughlenmommethod
rain	command line option, 279
command line option, 116, 290	ROVeg
RainAmongN	command line option, 304
command line option, 33	ROWater
raincover	command line option, 304
command line option, 279	RS
RainDisaggMethod	command line option, 304
command line option, 33	run_supy() (in module supy), 249
rainmaxres	Runoff
command line option, 279	command line option, 34
RainSn_Bldgs	RunoffToWater
command line option, 304	command line option, 117
RainSn_BSoil	runofftowater
command line option, 304	command line option, 280
RainSn_DecTr	
command line option, 304	S
RainSn_EveTr	S1
	~ -
command line option, 305	command line option, 117
RainSn_Grass	s1
command line option, 305	command line option, 280
RainSn_Paved	S2
command line option, 305	command line option, 117
RainSn_Water	s2
command line option, 305	command line option, 280
read_epw() (in module supy.util), 253	SatHydraulicCond
ResolutionFilesIn	command line option, 118
command line option, 29	sathydraulicconduct
ResolutionFilesInESTM	command line option, 280
command line option, 29	save_supy() (in module supy), 250
ResolutionFilesOut	Sd_Bldgs
command line option, 30	command line option, 307
resp_a	Sd_BSoil
command line option, 59, 279	command line option, 307
resp_b	Sd_DecTr
command line option, 60, 279	command line option, 307
RH	Sd_EveTr
command line option, 117, 289	command line option, 307
RH2	Sd_Grass
command line option, 303	command line option, 307
RO	Sd_Paved
command line option, 303	command line option, 307
ROImp	Sd_Water
command line option, 304	command line option, 307

SDD_DecTr	SnowDensBSoil
command line option, 305	command line option, 161
SDD_EveTr	SnowDensDecTr
command line option, 305	command line option, 161
SDD_Grass	SnowDensEveTr
command line option, 305	command line option, 161
SDDFul1	SnowDensGrass
command line option, 118	command line option, 161
sddfull	SnowDensMax
command line option, 280	command line option, 120
sfr_surf	snowdensmax
command line option, 280	command line option, 281
show_version() (in module supy), 251	SnowDensMin
sim_ohm() (in module supy.util), 254	command line option, 120
SMD	snowdensmin
command line option, 305	command line option, 281
SMDBldgs	SnowDensPaved
command line option, 305	command line option, 160
SMDBSoil	SnowDensWater
command line option, 305	command line option, 161
SMDDecTr	snowfrac
command line option, 305	command line option, 282
SMDEveTr	SnowFracBldgs
command line option, 306	command line option, 160
SMDGrass	SnowFracBSoil
command line option, 306	command line option, 160
SMDMethod	SnowFracDecTr
command line option, 28	command line option, 160
smdmethod	SnowFracEveTr
command line option, 280	command line option, 160
SMDPaved	SnowFracGrass
command line option, 306	command line option, 160
snow	SnowFracPaved
command line option, 118, 290	command line option, 159
snowalb	SnowFracWater
command line option, 281	command line option, 160
SnowAlb0	SnowInitially
command line option, 161	command line option, 158
snowalbmax	snowlimbldg
command line option, 281	command line option, 282
snowalbmin	SnowLimPatch
command line option, 281	command line option, 120
SnowCh	snowlimpaved
command line option, 307	command line option, 282
SnowClearingProfWD	SnowLimRemove
command line option, 118	command line option, 121
SnowClearingProfWE	snowpack
command line option, 119	command line option, 282
SnowCode	SnowPackBldgs
command line option, 119	command line option, 159
snowdens	SnowPackBSoil
command line option, 281	command line option, 159
SnowDensBldgs	SnowPackDecTr
command line option, 160	command line option, 159
Communic Time Operon, 100	Command Time Option, 135

SnowPackEveTr	SoilstoreDecTrState
command line option, 159	command line option, 154
SnowPackGrass	SoilstoreEveTrState
command line option, 159	command line option, 154
snowpacklimit	SoilstoreGrassState
command line option, 282	command line option, 154
SnowPackPaved	SoilstorePavedState
command line option, 159	command line option, 154
SnowPackWater	SoilTypeCode
command line option, 159	command line option, 122
	SOLWEIG, 340
snowprof_24hr command line option, 282	
- · · · · · · · · · · · · · · · · · · ·	SOLWEIGUSe
SnowRBldgs	command line option, 28
command line option, 307	Sondeflag
SnowRPaved	command line option, 165
command line option, 307	StabilityMethod
SnowUse	command line option, 26
command line option, 24	stabilitymethod
snowuse	command line option, 283
command line option, 282	StartDLS
snowwater	command line option, 122
command line option, 283	startdls
SnowWaterBldgsState	command line option, 283
command line option, 158	State
SnowWaterBSoilState	command line option, 308
command line option, 158	state_surf
SnowWaterDecTrState	command line option, 284
command line option, 158	StateLimit
SnowWaterEveTrState	command line option, 123
command line option, 158	statelimit_surf
SnowWaterGrassState	command line option, 284
command line option, 158	StBldgs
SnowWaterPavedState	command line option, 308
command line option, 158	StBSoil
SnowWaterWaterState	command line option, 307
command line option, 158	StDecTr
SoilDensity	command line option, 308
command line option, 121	StEveTr
SoilDepth	command line option, 308
command line option, 121	StGrass
_	
soildepth	command line option, 308
command line option, 283	StorageHeatMethod
SoilStore	command line option, 26
command line option, 35	storageheatmethod
soilstore_surf	command line option, 284
command line option, 283	StorageMax
SoilstoreBldgsState	command line option, 123
command line option, 154	StorageMin
SoilstoreBSoilState	command line option, 124
command line option, 154	storedrainprm
SoilStoreCap	command line option, 284
command line option, 122	StPaved
soilstorecap_surf	command line option, 308
command line option, 283	StWater

command line option, 308	SWE
suews-convert command line option	command line option, 306
from, 260	SWE_Bldgs
input, 260	command line option, 306
output, 260	SWE_BSoil
to, 260	command line option, 306
- f , 260	SWE_DecTr
-i, 260	command line option, 306
-o, 260	SWE_EveTr
-t, 260	command line option, 306
suews-run command line option	SWE_Grass
path_runcontrol, 260	command line option, 306
-p, 260	SWE_Paved
_	
SuppressWarnings	command line option, 306
command line option, 32	SWE_Water
Surf_k1	command line option, 306
command line option, 125	Т
Surf_k2	ı
command line option, 126	T2
Surf_k3	command line option, 308
command line option, 126	T_1
Surf_k4	command line option, 308
command line option, 126	T_10
Surf_k5	command line option, 308
command line option, 126	T_11
Surf_rhoCp1	command line option, 309
command line option, 126	T 12
Surf_rhoCp2	command line option, 309
command line option, 127	T 13
Surf_rhoCp3	command line option, 309
command line option, 127	T_14
Surf_rhoCp4	command line option, 309
command line option, 127	T 15
Surf_rhoCp5	command line option, 309
command line option, 127	T_16
Surf_thick1	command line option, 309
command line option, 127	
Surf_thick2	T_17
command line option, 128	command line option, 309
Surf_thick3	T_18
command line option, 128	command line option, 309
Surf_thick4	T_19
	command line option, 309
command line option, 128	T_2
Surf_thick5	command line option, 309
command line option, 128	T_20
SurfaceArea	command line option, 309
command line option, 125	T_21
surfacearea	command line option, 310
command line option, 284	T_22
SurfCh	command line option, 310
command line option, 308	T_23
SVF, 340	command line option, 310
sw_dn_direct_frac	T_24
command line option, 284	command line option, 310
	<u>.</u> ,

T_25	th			
command line option, 310	command	line	option,	285
T_26	Theat_fix		-	
command line option, 310		line	option,	168
T_27	Theat_off		,	
command line option, 310		line	option,	169
T_28	Theat_on		орстоп,	10)
command line option, 310		line	option,	160
T_29	theta	11116	option,	10)
command line option, 310		line	option,	50
T_3	Theta+_K	11116	option,	
command line option, 310		lino	ontion	121
			option,	131
T_30	theta_bioco			205
command line option, 310		line	option,	283
T_4	Theta_K	٠.		101
command line option, 311		line	option,	131
T_5	Tiair			
command line option, 311		line	option,	131
T_6	Timezone		_	
command line option, 311	command	line	option,	131
T_7	timezone			
command line option, 311	command	line	option,	285
T_8	TL			
command line option, 311	command	line	option,	131
T_9	tl			
command line option, 311	command	line	option,	286
Ta	Tmax			
command line option, 311	command	line	option,	311
Tair	Tmin		-	
command line option, 129, 289	command	line	option,	311
tau_a	Tmrt		• ′	
command line option, 129, 285		line	option,	311
tau_f	ToBldgs		,	
command line option, 129, 285	J	line	option,	132
tau_r	ToBSoil		орстоп,	152
command line option, 129, 285		line	option,	132
TCritic_Cooling_WD	ToDecTr	11110	орстоп,	152
command line option, 130		line	option,	132
TCritic_Cooling_WE	ToEveTr	TIME	operon,	132
command line option, 130		lino	option,	132
TCritic_Heating_WD	ToGrass	11116	option,	132
5		lino	ontion	122
command line option, 129		TINE	option,	132
TCritic_Heating_WE	ToPaved	1		122
command line option, 130		line	option,	133
Temp_C0	ToRunoff			400
command line option, 156			option,	133
tempmeltfact	ToSoilStore			
command line option, 285		line	option,	133
TempMeltFactor	TotCh			
command line option, 130	command	line	option,	312
Tg	ToWater			
command line option, 311	command	line	option,	133
TH	trafficrate			
command line option, 130	command	line	option,	286

TrafficRate_	_WD			U		
command	line	option,	134	U		
TrafficRate_	WE				line	option, 136, 289
command	line	option,	134	U10	11110	operon, 150, 207
TrafficUnits	;				line	option, 312
command	line	option,	134	U_1	11110	operon, 312
trafficunits	;			_	line	option, 313
command	line	option,	286	U_10	11110	operon, 313
traffprof_24	hr				line	option, 313
command	line	option,	286	U_11	11110	operon, sis
TraffProfWD					line	option, 313
command	line	option,	133	U_12	11110	operon, sis
TraffProfWE					line	option, 313
command	line	option,	134	U_13		- F
Troad					line	option, 313
command	line	option,	135	U_14		- F
Troof					line	option, 313
command	line	option,	135	U_15		,.
Ts					line	option, 313
command	line	option,	312	U_16		,.
Tsnow_Bldgs					line	option, 313
command	line	option,	312	U_17		•
Tsnow_BSoil					line	option, 313
command	line	option,	312	U_18		-
Tsnow_DecTr				command	line	option, 313
command	line	option,	312	U_19		
Tsnow_EveTr				command	line	option, 313
command	line	option,	312	U_2		
Tsnow_Grass				command	line	option, 314
command	line	option,	312	U_20		
Tsnow_Paved			212	command	line	option, 314
command	line	option,	312	U_21		
Tsnow_Water			212	command	line	option, 314
command	line	option,	312	U_22		
Tstep	12		20	command	line	option, 314
command	TINE	option,	29	U_23		
tstep	1:00	antian	296		line	option, 314
command Tsurf	TINE	option,	280	U_24		
command	lino	ontion	135 312		line	option, 314
TsurfChoice	11116	option,	133, 312	U_25		
command	lina	ontion	168		line	option, 314
tt, 341	11116	op cron,	100	U_26		
Twall					line	option, 314
command	line	ontion	135	U_27		
Twall e	11110	орстоп,	133		line	option, 314
command	line	ontion	135	U_28	, .	
Twall_n		ор стоп,	133		line	option, 314
command	line	ontion.	136	U_29	12	214
Twall_s		· · ·			ттие	option, 314
command	line	option.	136	U_3	lina	ontion 215
Twall_w		<u>.</u> ,		U_30	ттив	option, 315
command	line	option,	136		line	option, 315
				U_4	111C	op cron, 313
				U_4		

command line option, 315	Wall_thick4
U_5	command line option, 139
command line option, 315	Wall_thick5
U_6	command line option, 139
command line option, 315	WATCH, 341
U_7	Water
command line option, 315	command line option, 34
U_8	WaterDepth
command line option, 315	command line option, 140
U_9	waterdist
command line option, 315	command line option, 287
UMEP, 341	WaterState
use_sw_direct_albedo	command line option, 157
command line option, 286	WaterUseMethod
V.	command line option, 28
V	waterusemethod
veg_contact_fraction_const	command line option, 287
command line option, 287	WaterUseProfAutoWD
veg_fsd_const	command line option, 140
command line option, 287	WaterUseProfAutoWE
veg_ssa_lw	command line option, 140
command line option, 287	WaterUseProfManuWD
veg_ssa_sw	command line option, 141
command line option, 287	WaterUseProfManuWE
veg_type	command line option, 141
command line option, 287	wdir
	command line option, 141, 290
W	wetthresh_surf
Wall_k1	command line option, 288
command line option, 137	WetThreshold
Wall_k2	command line option, 141
command line option, 137	WithinGridBldgsCode
Wall_k3	command line option, 142
command line option, 137	WithinGridBSoilCode
Wall_k4	command line option, 143
command line option, 137	WithinGridDecTrCode
	command line option, 143
Wall_k5	WithinGridEveTrCode
command line option, 137	command line option, 143
Wall_rhoCp1	WithinGridGrassCode
command line option, 138	command line option, 144
Wall_rhoCp2	WithinGridPavedCode
command line option, 138	command line option, 144
Wall_rhoCp3	WithinGridWaterCode
command line option, 138	command line option, 144
Wall_rhoCp4	WriteOutOption
command line option, 138	command line option, 31
Wall_rhoCp5	Wsb
command line option, 138	command line option, 166
Wall_thick1	WU_DecTr1
command line option, 139	command line option, 316
Wall_thick2	WU_DecTr2
command line option, 139	command line option, 316
Wall_thick3	WU_DecTr3
command line option, 139	MO_DCCII 3

command WU_EveTr1	line	option, 316	$\begin{array}{c} \text{command} \\ \text{z_14} \end{array}$	line	option,	322
command WU_EveTr2	line	option, 316	$\begin{array}{c} \text{command} \\ z_15 \end{array}$	line	option,	322
command WU_EveTr3	line	option, 316	$\begin{array}{c} \text{command} \\ \text{z_16} \end{array}$	line	option,	322
command WU_Grass1	line	option, 316	$\begin{array}{c} \text{command} \\ \text{z_17} \end{array}$	line	option,	322
command WU_Grass2	line	option, 316	$\begin{array}{c} \text{command} \\ z_18 \end{array}$	line	option,	322
command WU_Grass3	line	option, 316	$\begin{array}{c} \text{command} \\ \text{z_19} \end{array}$	line	option,	322
command WUDecTr	line	option, 316	$\begin{array}{c} \text{command} \\ z_2 \end{array}$	line	option,	323
command WUEveTr	line	option, 315	$\begin{array}{c} \text{command} \\ z_20 \end{array}$	line	option,	323
command WUGrass	line	option, 315	$\begin{array}{c} \text{command} \\ z_21 \end{array}$	line	option,	323
command Wuh	line	option, 315	$\begin{array}{c} \text{command} \\ z_22 \end{array}$	line	option,	323
command WUInt	line	option, 145, 289	$\begin{array}{c} command \\ z_23 \end{array}$	line	option,	323
command wuprofa_24h		option, 316	$\begin{array}{c} \text{command} \\ z_24 \end{array}$	line	option,	323
command wuprofm_24h		option, 288	$\begin{array}{c} \text{command} \\ z_25 \end{array}$	line	option,	323
	line	option, 288	$\begin{array}{c} \text{command} \\ z_26 \end{array}$	line	option,	323
Xxsmd			$\begin{array}{c} \text{command} \\ z_27 \end{array}$	line	option,	323
	line	option, 145, 290	$\begin{array}{c} \text{command} \\ z_28 \end{array}$	line	option,	323
Year			command z_29	line	option,	323
	line	option, 145	$\begin{array}{c} \text{command} \\ z_3 \end{array}$	line	option,	324
Z			$\begin{array}{c} \text{command} \\ z_30 \end{array}$	line	option,	324
z command z0	line	option, 146, 288	$\begin{array}{c} \text{command} \\ z_4 \end{array}$	line	option,	324
	line	option, 146	$\begin{array}{c} \text{command} \\ z_5 \end{array}$	line	option,	324
	line	option, 322	$\begin{array}{c} \text{command} \\ z_6 \end{array}$	line	option,	324
-	line	option, 288	$\begin{array}{c} \text{command} \\ z_7 \end{array}$	line	option,	324
	line	option, 322	$\begin{array}{c} \text{command} \\ z_8 \end{array}$	line	option,	324
command	line	option, 322	$\begin{array}{c} \text{command} \\ \text{z_9} \end{array}$	line	option,	324
	line	option, 322	command zd	line	option,	324
z_{-12} command z_{-13}	line	option, 322	$\begin{array}{c} \text{command} \\ \text{zdm} \end{array}$	line	option,	146

SUEWS Documentation, Release v2020a

```
command line option, 324
zdm_in
    command line option, 288
Zenith
    command line option, 316
zi, 341
zi0
    command line option, 147
QS, 340
, 341
F, 340
```