# surface conductance/resistance related functions
import numpy as np
import pandas as pd
from ._atm import cal_des_dta, cal_dq
def cal_rs_obs(qh, qe, ta, rh, pa, ra, method="iPM"):
"""Calculate surface resistance based on observations, notably turbulent fluxes.
Parameters
----------
qh : numeric
sensible heat flux [W m-2]
qe : numeric
latent heat flux [W m-2]
ta : numeric
air temperature [degC]
rh : numeric
relative humidity [%]
pa : numeric
air pressure [Pa]
ra : numeric
aerodynamic resistance [m s-1]
method: str
method used to calculate rs, can be one of {'iPM','FG'}, by default 'iPM'
'iPM': inverted Penman-Monteith
'FG': flux gradient
Returns
-------
numeric
Surface resistance based on observations [s m-1]
"""
from atmosp import calculate as ac
# choose calculation method
dict_fun = {
"iPM": cal_rs_iPM,
"FG": cal_rs_FG,
}
fun = dict_fun[method]
# actual calculation via the wrapper function
ser_rs = fun(qh, qe, ta, rh, pa, ra)
return ser_rs
def cal_rs_iPM(qh, qe, ta, rh, pa, ra):
"""Calculate surface resistance based on observations, notably turbulent fluxes.
Parameters
----------
qh : numeric
sensible heat flux [W m-2]
qe : numeric
latent heat flux [W m-2]
ta : numeric
air temperature [degC]
rh : numeric
relative humidity [%]
pa : numeric
air pressure [Pa]
ra : numeric
aerodynamic resistance [m s-1]
Returns
-------
numeric
Surface resistance based on observations [s m-1]
"""
from atmosp import calculate as ac
# psychrometric constant [Pa K-1] as a function of air pressure
ser_gamma = 0.665e-3 * pa
# air density [kg m-3]
val_rho = 1.27
# heat capacity of air [J kg-1 K-1]
val_cp = 1005
# convert temp from C to K
ta_K = ta + 273.15
# slope of es(Ta) curve at Ta
ser_des_dTa = cal_des_dta(ta_K, pa, dta=1.0)
#
arr_e = ac("e", p=pa, T=ta_K, RH=rh)
arr_es = ac("es", p=pa, T=ta_K)
arr_vpd = arr_es - arr_e
#
ser_rs_1 = (ser_des_dTa / ser_gamma) * (qh / qe - 1) * ra
ser_rs_2 = val_rho * val_cp * arr_vpd / (ser_gamma * qe)
ser_rs = ser_rs_1 + ser_rs_2
try:
# try to pack as Series
ser_rs = pd.Series(ser_rs, index=ta_K.index)
except AttributeError as ex:
print(ex, "cannot pack into pd.Series")
pass
return ser_rs
def cal_rs_FG(qh, qe, ta, rh, pa, ra):
"""Calculate surface resistance based on observations, notably turbulent fluxes.
Parameters
----------
qh : numeric
sensible heat flux [W m-2]
qe : numeric
latent heat flux [W m-2]
ta : numeric
air temperature [degC]
rh : numeric
relative humidity [%]
pa : numeric
air pressure [Pa]
ra : numeric
aerodynamic resistance [m s-1]
Returns
-------
numeric
Surface resistance based on observations [s m-1]
"""
from atmosp import calculate as ac
from ._atm import cal_dens_vap, cal_lat_vap, cal_qa
# air density [kg m-3]
val_rho = 1.27
# heat capacity of air [J kg-1 K-1]
val_cp = 1005
# convert temp from C to K
ta_K = ta + 273.15
# canopy bulk surface temperature
tc_K = qh / (val_rho * val_cp) * ra + ta_K
# actual atmospheric vapour pressure [Pa]
ser_qa = ac("qv", p=pa, T=ta_K, RH=rh) + rh * 0
# saturated atmospheric vapour pressure at canopy surface [Pa]
ser_qs_c = ac("qvs", p=pa, T=tc_K) + rh * 0
# # vapour pressure deficit [Pa]
# arr_vpd = arr_es_c - arr_ea
# specific humidity [kg kg-1]
# ser_qa = cal_qa(rh, ta_K, pa / 100)
# latent heat of vapour [J kg-1]
ser_lv = cal_lat_vap(ser_qa, ta_K, pa / 100) + pa * 0
# vapour density [kg m-3]
rho_v = ac("rho", RH=rh, T=ta_K, p=pa) + pa * 0
ser_et = qe / ser_lv
ser_rs = rho_v * (ser_qs_c - ser_qa) / ser_et - ra
print(
# ser_qa.median(),
# ta_K.median(),
# pa.median(),
# tc_K.median(),
# rho_v.median(),
# (ser_qs_c - ser_qa).median(),
# ser_et.median(),
# ra.median(),
# ser_lv.median(),
)
try:
# try to pack as Series
ser_rs = pd.Series(ser_rs, index=ta_K.index)
except AttributeError as ex:
print(ex, "cannot pack into pd.Series")
pass
return ser_rs
[docs]
def cal_gs_obs(qh, qe, ta, rh, pa, ra):
"""Calculate surface conductance based on observations, notably turbulent fluxes.
Parameters
----------
qh : numeric
Sensible heat flux [W m-2]
qe : numeric
Latent heat flux [W m-2]
ta : numeric
Air temperature [degC]
rh : numeric
Relative humidity [%]
pa : numeric
Air pressure [Pa]
Returns
-------
numeric
Surface conductance based on observations [mm s-1]
"""
rs_obs = cal_rs_obs(qh, qe, ta, rh, pa, ra)
gs_obs = 1e3 / rs_obs
return gs_obs
def cal_g_lai(lai, g_lai, lai_max):
"""Calculate LAI-related correction coefficient for surface conductance.
Parameters
----------
lai : numeric
Leaf area index [m2 m-2]
g_lai : numeric
LAI-related correction parameter [-]
lai_max : numeric
Maximum LAI [m2 m-2]
Returns
-------
numeric
LAI-related correction coefficient [-]
"""
g_lai = lai / lai_max * g_lai
return g_lai
def cal_g_kd(kd, g_kd, kd_max=1200.0):
"""Calculate solar radiation-related correction coefficient for surface conductance.
Parameters
----------
kd : numeric
Incoming solar radiation [W m-2]
g2 : numeric
Solar radiation-related correction parameter [-]
kd_max : numeric, optional
Maximum incoming solar radiation [W m-2], by default 1200.
Returns
-------
numeric
Solar radiation-related correction coefficient [-]
"""
g_kd_nom = kd / (g_kd + kd)
g_kd_denom = kd_max / (g_kd + kd_max)
g_kd = g_kd_nom / g_kd_denom
return g_kd
def cal_g_dq(dq, g_dq_base, g_dq_shape):
"""Calculate air humidity-related correction coefficient for surface conductance.
Parameters
----------
dq : numeric
Specific humidity deficit [g kg-1]
g_dq_base : numeric
Specific humidity-related correction parameter [-]
g_dq_shape : numeric
Specific humidity-related correction parameter [-]
Returns
-------
numeric
Air humidity-related correction coefficient
"""
g_dq = g_dq_base + (1 - g_dq_base) * g_dq_shape ** dq
return g_dq
def cal_g_ta(ta_c, g_ta, tl=-10.0, th=55.0):
"""Calculate air temperature-related correction coefficient for surface conductance.
Parameters
----------
ta_c : numeric
Air temperature [degC]
g_ta : numeric
Air temperature-related correction parameter
tl : numeric, optional
Low temperature limit [degC], by default -10.
th : numeric, optional
High temperature limit [degC], by default 55.
Returns
-------
numeric
Air temperature-related correction coefficient
"""
tc = (th - g_ta) / (g_ta - tl)
# set a threshold for avoiding numeric difficulty
tc = np.min([tc, 20])
# g_ta = ((ta_c-tl)*(th-ta_c)**tc)/((g_ta-tl)*(th-g_ta)**tc)
g_ta_nom = (ta_c - tl) * np.power((th - ta_c), tc)
g_ta_denom = (g_ta - tl) * np.power((th - g_ta), tc)
g_ta = g_ta_nom / g_ta_denom
return g_ta
def cal_g_smd(smd, g_smd, wp_smd):
"""Calculate soil moisture-related correction coefficient for surface conductance.
Parameters
----------
smd : numeric
Soil moisture deficit [mm].
g_smd : numeric
Soil moisture-related correction parameter.
wp_smd : numeric, optional
Wilting point indicated by soil moisture deficit [mm]
Returns
-------
numeric
Soil moisture-related correction coefficient
"""
# Wilting point calculated following SUEWS
# wp = wp_smd / g_smd
g_smd_nom = 1 - np.exp(g_smd * (smd - wp_smd))
g_smd_denom = 1 - np.exp(g_smd * (0 - wp_smd))
g_smd = g_smd_nom / g_smd_denom
return g_smd
[docs]
def cal_gs_suews(
kd, ta_c, rh, pa, smd, lai, g_cst, g_max, lai_max, wp_smd, debug=False
):
"""Model surface conductance/resistance using phenology and atmospheric forcing conditions.
Parameters
----------
kd : numeric
Incoming solar radiation [W m-2]
ta_c : numeric
Air temperature [degC]
rh : numeric
Relative humidity [%]
pa : numeric
Air pressure [Pa]
smd : numeric
Soil moisture deficit [mm]
lai : numeric
Leaf area index [m2 m-2]
g_cst : size-6 array
Parameters to determine surface conductance/resistance:
g_lai (LAI related), g_kd (solar radiation related),
g_dq_base (humidity related), g_dq_shape (humidity related),
g_ta (air temperature related),
g_smd (soil moisture related)
g_max : numeric
Maximum surface conductance [mm s-1]
lai_max : numeric
Maximum LAI [m2 m-2]
wp_smd : numeric
Wilting point indicated as soil moisture deficit [mm]
Returns
-------
numeric
Modelled surface conductance [mm s-1]
"""
from atmosp import calculate as ac
# broadcast g_lai – g_smd
# print('g_cst', g_cst)
g_lai, g2, g_dq_base, g_dq_shape, g_ta, g_smd = g_cst
# print(g_lai, g2, g_dq_base, g_dq_shape, g_ta, g_smd)
# lai related
g_lai = cal_g_lai(lai, g_lai, lai_max)
# print('g_lai', g_lai)
# kdown related
g_kd = cal_g_kd(kd, g2)
# print('g_kd', g_kd)
# dq related
ta_k = ta_c + 273.15
dq = cal_dq(rh, ta_c, pa / 100) * 1000 + rh * 0
g_dq = cal_g_dq(dq, g_dq_base, g_dq_shape)
# print('g_dq', g_dq)
# ta related
ta_c = ta_k - 273.15
g_ta = cal_g_ta(ta_c, g_ta)
# print('g_ta', g_ta)
# smd related
g_smd = cal_g_smd(smd, g_smd, wp_smd)
# print('g_smd', g_smd)
# combine all corrections
gs_c = g_lai * g_kd * g_dq * g_ta * g_smd
gs = g_max * gs_c
if debug:
# pack results into a dataframe
df_gs = pd.concat(
{
"gs_mod": pd.Series(gs),
"gs_c": pd.Series(gs_c),
"g_lai": pd.Series(g_lai),
"g_kd": pd.Series(g_kd),
"g_dq": pd.Series(g_dq),
"g_ta": pd.Series(g_ta),
"g_smd": pd.Series(g_smd),
},
axis=1,
)
return df_gs
else:
return gs
[docs]
def calib_g(
df_fc_suews,
ser_ra,
g_max,
lai_max,
wp_smd,
method="cobyla",
prms_init=None,
debug=False,
):
"""Calibrate parameters for modelling surface conductance over vegetated surfaces using `LMFIT <https://lmfit.github.io/lmfit-py/model.html>`.
Parameters
----------
df_fc_suews : pandas.DataFrame
DataFrame in `SuPy forcing <https://supy.readthedocs.io/en/latest/data-structure/df_forcing.html>`_ format
ser_ra: pandas.Series
Series with RA, aerodynamic resistance, [s m-1]
g_max : numeric
Maximum surface conductance [mm s-1]
lai_max : numeric
Maximum LAI [m2 m-2]
wp_smd : numeric
Wilting point indicated as soil moisture deficit [mm]
method: str, optional
Method used in minimisation by `lmfit.minimize`: details refer to its `method<lmfit:minimize>`.
prms_init: lmfit.Parameters, optional
Initial parameters for calibration
debug : bool, optional
Option to output final calibrated `ModelResult <lmfit:ModelResult>`, by default False
Returns
-------
dict, or `ModelResult <lmfit:ModelResult>` if `debug==True`
1. dict: {parameter_name -> best_fit_value}
2. `ModelResult`
Note:
Parameters for surface conductance:
g_lai (LAI related), g2 (solar radiation related),
g_dq_base (humidity related), g_dq_shape (humidity related),
g_ta (air temperature related),
g_smd (soil moisture related)
Note
----
For calibration validity, turbulent fluxes, QH and QE, in `df_fc_suews` should ONLY be observations, i.e., interpolated values should be avoided.
To do so, please place `np.nan` as missing values for QH and QE.
"""
from lmfit import Model, Parameter, Parameters
list_var_sel = ["qh", "qe", "Tair", "RH", "pres", "kdown", "xsmd", "lai"]
df_obs = df_fc_suews[list_var_sel].copy().dropna()
# convert to Pa
df_obs.pres *= 100
gs_obs = cal_gs_obs(
df_obs.qh, df_obs.qe, df_obs.Tair, df_obs.RH, df_obs.pres, ser_ra
)
def func_fit_g(
kd, ta, rh, pa, smd, lai, g_lai, g_kd, g_dq_base, g_dq_shape, g_ta, g_smd
):
gs = cal_gs_suews(
kd,
ta,
rh,
pa,
smd,
lai,
[g_lai, g_kd, g_dq_base, g_dq_shape, g_ta, g_smd],
g_max,
lai_max,
wp_smd,
)
return gs
gmodel = Model(
func_fit_g,
independent_vars=["lai", "kd", "ta", "rh", "pa", "smd"],
param_names=["g_lai", "g_kd", "g_dq_base", "g_dq_shape", "g_ta", "g_smd"],
)
if prms_init is None:
print("Preset parameters will be loaded!")
print("Please use with caution.")
prms = Parameters()
dict_prms_init = {
"lai": 3.5,
"kd": 50,
"q1": 0.1,
"q2": 0.7,
"ta": 25,
"smd": 0.05,
}
list_g = (
Parameter(f"g_{var}", val, True, 0, None, None, None)
for var, val in dict_prms_init.items()
)
prms.add_many(*list_g)
# set specific bounds:
# g_lai: LAI related
prms["g_lai"].set(min=0, max=10)
prms["g_kd"].set(min=0, max=300)
# g_dq_base, g_dq_shape: specific humidity related
prms["g_dq_base"].set(min=0, max=1)
prms["g_dq_shape"].set(min=0, max=1)
# g_ta: within reasonable temperature ranges
prms["g_ta"].set(min=-10, max=55)
# g_smd: within sensitive ranges of SMD
prms["g_smd"].set(min=0.02, max=0.1)
else:
print("User provided parameters are loaded!")
prms = prms_init
# pack into a DataFrame for filtering out nan
df_fit = pd.concat([gs_obs.rename("gs_obs"), df_obs], axis=1).dropna()
res_fit = gmodel.fit(
df_fit.gs_obs,
kd=df_fit.kdown,
ta=df_fit.Tair,
rh=df_fit.RH,
pa=df_fit.pres,
smd=df_fit.xsmd,
lai=df_fit.lai,
params=prms,
# useful ones: ['nelder', 'powell', 'cg', 'cobyla', 'bfgs', 'trust-tnc']
method=method,
# nan_policy='omit',
verbose=True,
)
# provide full fitted model if debug == True otherwise only a dict with best fit parameters
res = res_fit if debug else res_fit.best_values
return res
def fit_g_ta(ser_ta, ser_gs):
from lmfit import Model, Parameter, Parameters
model_g_ta = Model(
cal_g_ta,
independent_vars=["ta_c"],
param_names=["g_ta", "tl", "th"],
)
prms = Parameters()
prm_g_ta = Parameter(
"g_ta", ser_ta.median(), vary=True, min=ser_ta.min(), max=ser_ta.max()
)
prm_tl = Parameter("tl", min=ser_ta.min(), vary=False)
prm_th = Parameter("th", ser_ta.max(), vary=False)
prms.add_many(prm_g_ta, prm_tl, prm_th)
res_fit = model_g_ta.fit(ser_gs / ser_gs.max(), ta_c=ser_ta, params=prms)
return res_fit
def fit_g_smd(ser_smd, ser_gs, wp_smd):
from lmfit import Model, Parameter, Parameters
model_g_smd = Model(
cal_g_smd,
independent_vars=["smd"],
param_names=["g_smd", "wp_smd"],
)
prms = Parameters()
prm_g_smd = Parameter("g_smd", 0.02, vary=True, min=1e-4, max=0.5)
prm_wp_smd = Parameter("wp_smd", wp_smd, vary=False)
prms.add_many(prm_g_smd, prm_wp_smd)
res_fit = model_g_smd.fit(ser_gs / ser_gs.max(), smd=ser_smd, params=prms)
return res_fit
def fit_g_kd(ser_kd, ser_gs):
from lmfit import Model, Parameter, Parameters
model_g_kd = Model(
cal_g_kd,
independent_vars=["kd"],
param_names=["g_kd"],
)
prms = Parameters()
prm_g_kd = Parameter("g_kd", 100, vary=True, min=10, max=300)
prms.add(prm_g_kd)
res_fit = model_g_kd.fit(ser_gs / ser_gs.max(), kd=ser_kd, params=prms)
return res_fit
def fit_g_dq(ser_dq, ser_gs):
from lmfit import Model, Parameter, Parameters
model_g_dq = Model(
cal_g_dq,
independent_vars=["dq"],
param_names=["g_dq_base", "g_dq_shape"],
)
prms = Parameters()
prm_g_dq_base = Parameter(
"g_dq_base",
ser_gs.min() / ser_gs.max(),
vary=False,
)
prm_g_dq_shape = Parameter("g_dq_shape", 0.1, vary=True, min=0.01, max=0.95)
prms.add_many(prm_g_dq_base, prm_g_dq_shape)
res_fit = model_g_dq.fit(ser_gs / ser_gs.max(), dq=ser_dq, params=prms)
return res_fit
# NOAH parameterisations
# Kdown
def cal_g_kd_noah(kd, rgl=30, lai=2, rc_min=200.0, rc_max=5000):
f = 0.55 * kd / rgl * 2 / lai
g_kd = ((rc_min / rc_max) + f) / (1 + f)
return g_kd
# humidity
def cal_g_dq_noah(dq, hs=31):
"""Calculate air humidity-related correction coefficient for surface conductance.
Parameters
----------
dq : numeric
Specific humidity deficit [g kg-1]
hs : numeric
Specific humidity-related correction parameter [kg g-1]
Returns
-------
numeric
Air humidity-related correction coefficient
"""
g_dq = 1 / (1 + hs * (dq))
return g_dq
# smc
def cal_g_swc_noah(swc, q_wilt, q_ref):
"""Calculate soil moisture-related correction coefficient for surface conductance.
Parameters
----------
swc : numeric
Soil water content (volumetric) [m3 m-3].
q_wilt : numeric
wilting point [m3 m-3].
q_ref : numeric
reference point [m3 m-3].
Returns
-------
numeric
Soil moisture-related correction coefficient
"""
# Wilting point calculated following SUEWS
# wp = wp_smd / g_smd
g_swc = (swc - q_wilt) / (q_ref - q_wilt)
return g_swc
def cal_g_ta_noah(ta_c, b1=0.0016, tref=298 - 273.15):
"""Calculate air temperature-related correction coefficient for surface conductance.
Parameters
----------
ta_c : numeric
Air temperature [degC]
b1 : numeric
Air temperature-related correction parameter
tref : numeric, optional
Low temperature limit [K]
Returns
-------
numeric
Air temperature-related correction coefficient
"""
g_ta = 1 - b1 * (tref - ta_c) ** 2
return g_ta
def deriv_g_ta_noah(b1):
ar_ta = np.linspace(-10, 50, 100)
ser_ta = pd.Series(ar_ta, index=ar_ta)
ser_g = cal_g_ta_noah(ser_ta, b1)
res_fit = fit_g_ta(ser_ta, ser_g)
return res_fit
def deriv_g_dq_noah(hs):
ar_dq = np.linspace(0, 20, 100)
ser_dq = pd.Series(ar_dq*1e-3, index=ar_dq)
ser_g = cal_g_dq_noah(ser_dq, hs)
res_fit = fit_g_dq(ser_dq*1e3, ser_g)
return res_fit
def deriv_g_kd_noah(rgl, lai, rc_min):
ar_kd = np.linspace(10, 1200, 100)
ser_kd = pd.Series(ar_kd, index=ar_kd)
ser_g = cal_g_kd_noah(ser_kd, rgl, lai, rc_min)
res_fit = fit_g_kd(ser_kd, ser_g)
return res_fit
def deriv_g_smd_noah(dsoil, q_wilt, q_ref):
"""Calculate soil moisture-related correction coefficient for surface conductance.
Parameters
----------
dsoil : numeric
soil depth [mm].
q_wilt : numeric
wilting point [m3 m-3].
q_ref : numeric
reference point [m3 m-3].
Returns
-------
model fit result
"""
ar_swc = np.linspace(q_wilt, q_ref, 100)
ser_swc = pd.Series(ar_swc, index=ar_swc)
ser_g = cal_g_swc_noah(ser_swc, q_wilt, q_ref)
ser_smd = dsoil * (q_ref - ser_swc)
wp_smd = dsoil * (q_ref - q_wilt)
res_fit = fit_g_smd(ser_smd, ser_g, wp_smd)
return res_fit