Tip
Need help? Please let us know in the UMEP Community.
Please report issues with the manual on the GitHub Issues.
Please cite SUEWS with proper information from our Zenodo page.
6.1.3.1.4. supy.save_supy#
- supy.save_supy(df_output: DataFrame, df_state_final: DataFrame, freq_s: int = 3600, site: str = '', path_dir_save: str = PosixPath('.'), path_runcontrol: str = None, save_tstep=False, logging_level=50, output_level=1, debug=False) list [source]#
Save SuPy run results to files
6.1.3.1.4. Parameters#
- df_outputpandas.DataFrame
DataFrame of output
- df_state_finalpandas.DataFrame
DataFrame of final model states
- freq_sint, optional
Output frequency in seconds (the default is 3600, which indicates hourly output)
- sitestr, optional
Site identifier (the default is ‘’, which indicates site identifier will be left empty)
- path_dir_savestr, optional
Path to directory to saving the files (the default is Path(‘.’), which indicates the current working directory)
- path_runcontrolstr, optional
Path to SUEWS RunControl.nml, which, if set, will be preferably used to derive
freq_s
,site
andpath_dir_save
. (the default is None, which is unset)- save_tstepbool, optional
whether to save results in temporal resolution as in simulation (which may result very large files and slow progress), by default False.
- logging_level: logging level
one of these values [50 (CRITICAL), 40 (ERROR), 30 (WARNING), 20 (INFO), 10 (DEBUG)]. A lower value informs SuPy for more verbose logging info.
- output_levelinteger, optional
option to determine selection of output variables, by default 1. Notes: 0 for all but snow-related; 1 for all; 2 for a minimal set without land cover specific information.
- debugbool, optional
whether to enable debug mode (e.g., writing out in serial mode, and other debug uses), by default False.
6.1.3.1.4. Returns#
- list
a list of paths of saved files
6.1.3.1.4. Examples#
save results of a supy run to the current working directory with default settings
>>> list_path_save = supy.save_supy(df_output, df_state_final)
save results according to settings in RunControl.nml
>>> list_path_save = supy.save_supy(df_output, df_state_final, path_runcontrol='path/to/RunControl.nml')
save results of a supy run at resampling frequency of 1800 s (i.e., half-hourly results) under the site code
Test
to a customised location ‘path/to/some/dir’
>>> list_path_save = supy.save_supy(df_output, df_state_final, freq_s=1800, site='Test', path_dir_save='path/to/some/dir')